Основные теории возникновения вселенной. Происхождение вселенной концепция большого взрыва свойства мегами - реферат

До сих пор Вселенная является огромным и очень загадочным местом. На протяжении многих веков люди смотрели в космос и пытались объяснить, почему мы здесь и откуда мы пришли. Хотя, чтобы получить ответы на любой из этих вопросов, может потребоваться еще не одно столетие. А пока ученые предлагают нам свои теории.

Следует также отметить, что это всего лишь теории. Поэтому, естественно, они могут не совпадать друг с другом и даже противоречить.

Почему так трудно обнаружить тёмную материю?

В этом пункте мы поговорим о чем-то, что называется темной материей. Вселенная на 22% состоит из Тёмной материи, на 74% из Тёмной энергии. На остальную материю, в которую входят звёзды, планеты, межзвездный газ приходится лишь около 4% Вселенной. Тёмная материя невидима, потому что не взаимодействует со светом, но оказывает влияние на гравитацию, то есть она влияет на движения галактик и галактических кластеров. Благодаря тому, что тёмная материя обладает лишь гравитационным эффектом, она может практически незаметно проходить через «обычную» материю. По всем этим причинам темная материя еще не обнаружена, но физики уверены, что она существует..

На фото: Детальная картина Вселенной раннего возраста, а именно космическое фоновое излучение (Реликтовое излучение). На снимке обнаружены колебания температуры, что соответствует местам зарождения галактик.

Вопрос в том, почему так трудно обнаружить темную материю в экспериментах, которые проводятся на Земле? Один из возможных ответов исходит от физики элементарных частиц. В ходе эксперимента, было обнаружено, что темная материя может взаимодействовать с обычной материей, если они обе находятся в условиях, близких к началу создания Вселенной, а именно, в чрезвычайно высокотемпературной плазме. Если их моделирование истинно, это означает, что темную материю можно было наблюдать в первые дни Вселенной.

Была надежда на то, что создав эти условия в Большом адронном коллайдере, можно будет обнаружить темную материю. Но этого не случилось. Некоторые учёные считают, что нужен более чувствительный детектор, а некоторые утверждают - не стоит искать то, чего нет.

Тёмная материя убила динозавров

Наиболее вероятным виновником гибели динозавров считается астероид или вулканическая активность сибирских вулканов. Однако, не прекращаются обсуждения мел-палеогенового вымирания 66 миллионов лет назад. Несмотря на это, физик Лиза Рэндалл считает, что виной тому была темная материя.

Основа теории возвращает нас к 1980-м годам, когда палеонтологи Дэвид Рауп и Джек Сепкоски обнаружили доказательства того, что каждые 26 миллионов лет после Массового пермского вымирания (которое произошло около 252 миллионов лет назад и 96 процентов жизни было уничтожено), также случались вымирания животных. После дальнейших исследований, возвращаясь на полтора миллиарда лет назад, похоже, что примерно каждые 30 миллионов лет на Землю обрушивались катаклизмы, которым планета отдавала или уделяла несколько миллионов лет. Чего только стоят , о которых мы недавно писали.

Тем не менее ученые никогда не были уверены, почему катаклизмы происходили по такому расписанию. Теория Рэндалла заключается в том, что речь идет о темной материи. Считается, что темная материя разбросана по всей Вселенной и используется в качестве лесов, на которых построены галактики, в том числе наш дом - Млечный Путь. По мере того как наша Солнечная система вращается вокруг Млечного Пути, она «плавает», а временами она качается как пробка в воде. И это происходит примерно каждые 30 миллионов лет.

В таких ситуациях наша Солнечная система может столкнуться с диском темной материи. Диск должен был быть на одну десятую толщины видимого диска звезд Млечного Пути и иметь плотность по меньшей мере одной солнечной массы за квадратный световой год.

Обычная материя и темная материя могут проходить друг через друга, но темная материя может влиять на обычную материю через гравитацию. В результате, когда некоторая материя, плывущая в пространстве, вступает в контакт с темной материей, оно может направить некоторые объекты во Вселенной, которые в конечном счете столкнутся с Землей.

Если теория Рэндалла верна, то темная материя может быть ответственной за основные части формирования Вселенной.

Жизнь распространяется во Вселенной как эпидемия

Когда речь идет о Вселенной, всегда возникает один вопрос: есть ли разумная жизнь, отличная от нашей? Или мы просто одни здесь во Вселенной? Ученые тоже задаются этими вопросами, и в настоящее время они изучают, как появилась жизнь, в том числе и наша.

Согласно исследованию Гарвардско-Смитсоновского центра астрофизики, наиболее логичным ответом является то, что жизнь распространяется от звезды к звезде, как эпидемия. Понятие о том, что жизнь распространяется от планеты к планете и от звезды к звезде, называется панспермией. Конечно, если вы видели Прометея, эта концепция является основной сюжета.

Если жизнь перешла от звезды к звезде, это означает, что Млечный Путь может быть наполнен жизнью. Если их теория верна, то возможно, что на других планетах в Млечном Пути также может быть жизнь.

Еще одна интересная вещь, которую они нашли в своих расчетах, заключается в том, что жизнь может распространяться микроскопическими организмами, которые прибыли на астероиде. Или ее могли распространить умные существа или существо.

Кроме того, в последнее время ученые сходятся во мнении, что жизнь на других планетах должна развиваться по тем же принципам, что и на Земле. Это говорит о том, что инопланетяне могут быть очень похожими на жителей нашей планеты.

Почему Вселенная создана из материи?

Материя - это все, что занимает пространство, и имеет вес. Противоположность материи называется антиматерией. Когда материя и антиматерия соприкасаются, они уничтожают друг друга (аннигилируют) с выделением огромного количества энергии, что и произошло в начале создания Вселенной и способствовало ее расширению.

В начале должно было быть равное количество материи и антиматерии. Однако, если бы было равное количество материи и антиматерии, они бы уничтожили друг друга, и Вселенная перестала существовать. Это заставило физиков поверить, что было немного больше материи, чем антиматерии. Для распространения материи по Вселенной, было бы достаточно небольшой частицы материи на каждые 10 миллиардов частиц антиматерии.

Проблема заключалась в том, что, хотя физики знали, что было больше материи, они не знали почему. Это было до 2008 года, тогда исследователи из Чикагского университета наблюдали субатомные частицы, у которых была очень короткая жизнь, называемыми B-мезонами. Исследователи, получившие Нобелевскую премию по физике за это открытие, обнаружили, что B-мезоны и анти-B-мезоны распадаются иначе друг от друга. Это означает, что возможно, что после уничтожения в начале Вселенной B-мезоны и анти-B-мезоны разлагаются по-разному, оставляя достаточное количество материи для создания всех звезд, планет и даже вас и всего, что вы касаетесь, включая воздух которым вы дышите.

Беспорядок сделал жизнь возможной

Энтропия играет огромную роль во Вселенной. Высокая энтропия означает беспорядок и хаос в системе. Низкая энтропия говорит нам о большей организации, упорядоченности.

Пример для визуализации этого - Лего. Дом Лего имел бы низкую энтропию, а коробка случайных, несвязанных предметов имела бы высокую энтропию.

Интересно, что энтропия может быть причиной того, что жизнь существует. И даже говоря о таких высоко организованных вещах, как головной мозг, это утверждение, хоть и кажется неверным, имеет место быть.

Тем не менее согласно теории помощника профессора Массачусетского технологического института Джереми Ингленд, высшая энтропия может быть ответственна за жизнь во Вселенной.

Ингленд говорит, что в идеальных условиях случайная группа молекул может самоорганизоваться, чтобы эффективно рассеивать больше энергии в неоднородной среде, которой является наша Вселенная.

Однако теория Ингленда должна пройти много испытаний. Если он прав, тогда как предполагают эксперты, что его имя будут помнить так же, как мы помним Чарльза Дарвина.

Вселенная не имеет начала

Преобладающая теория начала нашей Вселенной состоит в том, что более 13,8 миллиарда лет назад, с точки зрения сингулярности, Большой взрыв породил Вселенную и с тех пор она расширяется.

«Большой взрыв» впервые был теоретизирован в 1927 году, и модель основана на теории общей теории относительности Альберта Эйнштейна. Проблема в том, что в теории Эйнштейна есть некоторые пробелы. В основном, что законы физики ломаются до достижения сингулярности. Другая большая проблема заключается в том, что другая доминирующая теория в физике, квантовая механика, не согласуется с общей теорией относительности. Кроме того, ни теория относительности, ни квантовая механика не учитывают темную материю. Это означает, что, хотя Большой взрыв является одной из лучших теорий о том, как появилась Вселенная, но теория может быть неверной.!

Альтернативная теория состоит в том, что Вселенная никогда не была в точке сингулярности, и не было большого взрыва. Вместо этого, Вселенная бесконечна и не имеет начала или конца. Исследователи пришли к этой теории, применив квантовые поправки к теории общей теории относительности Эйнштейна, используя более старую модель интерпретации квантовой механики, называемой Бохманской механикой.

Их метод проверки теории также поможет объяснить темную материю. Если их теория правильна, что Вселенная бесконечна, это будет означать, что Вселенная имеет карманы сверхтекучей жидкости, заполненные теоретическими частицами, такими как гравитоны и аксиомы. Если сверхтекучесть соответствует распределению темной материи, то возможно, что Вселенная бесконечна.

И это ещё не конец…

Эта тема насколько безгранична, что её можно продолжать ещё очень долго. Другие, еще более удивительные теории о Вселенной вы можете почитать в

Большой взрыв относится к разряду теорий, пытающихся в полном объеме проследить историю рождения Вселенной, определить начальные, текущие и конечные процессы в ее жизни.

Было ли что-то до того, как появилась Вселенная? Этот краеугольный, практически метафизический вопрос задается учеными и по сегодняшний день. Возникновение и эволюция мироздания всегда были и остаются предметом жарких споров, невероятных гипотез и взаимоисключающих теорий. Основными версиями происхождения всего, что нас окружает, по церковной трактовке предполагалось божественное вмешательство, а научный мир поддерживал гипотезу Аристотеля о статичности мироздания. Последней модели придерживался Ньютон, защищавший безграничность и постоянство Вселенной, и Кант, развивший эту теорию в своих трудах. В 1929 году американский астроном и космолог Эдвин Хаббл кардинально изменил взгляды ученых на мир.

Он не только обнаружил наличие многочисленных галактик, но и расширение Вселенной – непрерывное изотропное увеличение размеров космического пространства, начавшееся в миг Большого взрыва.

Кому мы обязаны открытием Большого взрыва?

Работы Альберта Эйнштейна над теорией относительности и его гравитационные уравнения позволили де Ситтеру создать космологическую модель Вселенной. Дальнейшие изыскания были привязаны к этой модели. В 1923 г. Вейль предположил, что помещенное в космическом пространстве вещество должно расширяться. Огромное значение в разработке этой теории имеет работа выдающегося математика и физика А. А. Фридмана. Еще в 1922 г. он допустил расширение Вселенной и сделал обоснованные выводы о том, что начало всей материи находилось в одной безгранично плотной точке, а развитие всему дал Большой взрыв. В 1929 г. Хаббл опубликовал свои статьи, объясняющие подчинение лучевой скорости расстоянию, впоследствии эта работа стала называться «законом Хаббла».

Г. А. Гамов, опираясь на теорию Фридмана о Большом взрыве, разработал идею о высокой температуре исходного вещества. Также он предположил наличие космического излучения, не пропавшего с расширением и остыванием мира. Ученый выполнил предварительные расчеты возможной температуры остаточного излучения. Предполагаемое им значение находилось в диапазоне 1-10 К. К 1950 г. Гамов сделал более точные подсчеты и объявил результат в 3 К. В 1964 радиоастрономы из Америки, занимаясь усовершенствованием антенны, путем исключения всех возможных сигналов, определили параметры космического излучения. Его температура оказалась равной 3 К. Эти сведения стали важнейшим подтверждением работы Гамова и существования реликтового излучения. Последующие измерения космического фона, проведенные в открытом космосе, окончательно доказали верность расчетов ученого. Ознакомится с картой реликтового излучения можно по .

Современные представления о теории Большого взрыва: как это произошло?

Одной из моделей, комплексно объясняющих появление и процессы развития известной нам Вселенной, стала теория Большого взрыва. Согласно широко принятой сегодня версии, изначально присутствовала космологическая сингулярность – состояние, обладающее бесконечной плотностью и температурой. Физиками было разработано теоретическое обоснование рождения Вселенной из точки, имевшей чрезвычайную степень плотности и температуры. После возникновения Большого взрыва пространство и материя Космоса начали непрекращающийся процесс расширения и стабильного охлаждения. Согласно последним исследованиям начало мирозданию было положено не менее 13,7 млрд. лет назад.

Отправные периоды в формировании Вселенной

Первый момент, воссоздание которого допускается физическими теориями, – это Планковская эпоха, формирование которой стало возможным спустя 10-43 секунд после Большого взрыва. Температура материи доходила до 10*32 К, а ее плотность равнялась 10*93 г/см3. В этот период гравитация обрела самостоятельность, отделившись от основополагающих взаимодействий. Непрекращающееся расширение и снижение температуры вызвали фазовый переход элементарных частиц.

Следующий период, характеризующийся показательным расширением Вселенной, наступил еще через 10-35 секунд. Его назвали «Космической инфляцией». Произошло скачкообразное расширение, во много раз превышающее обычное. Этот период дал ответ на вопрос, почему температура в различных точках Вселенной одинакова? После Большого взрыва вещество не сразу разлетелось по Вселенной, еще 10-35 секунд оно было довольно компактным и в нем установилось тепловое равновесие, не нарушенное при инфляционном расширении. Период дал базовый материал – кварк-глюонную плазму, использовавшуюся для формирования протонов и нейтронов. Этот процесс осуществился после дальнейшего уменьшения температуры, он именуется «бариогенезисом». Зарождение материи сопровождалось одновременным возникновением антиматерии. Два антагонистичных вещества аннигилировали, становясь излучением, но количество обычных частиц превалировало, что и позволило возникнуть Вселенной.

Очередной фазовый переход, произошедший после убывания температуры, привел к возникновению известных нам элементарных частиц. Пришедшая вслед за этим эпоха «нуклеосинтеза» ознаменовалась объединением протонов в легкие изотопы. Первые образованные ядра имели короткий срок существования, они распадались при неизбежных столкновениях с другими частицами. Более устойчивые элементы возникли уже после трех минут, прошедших после сотворения мира.

Следующей знаменательной вехой стало доминирование гравитации над другими имеющимися силами. Через 380 тыс. лет со времени Большого взрыва появился атом водорода. Увеличение влияния гравитации послужило окончанием начального периода формирования Вселенной и дало старт процессу возникновения первых звездных систем.

Даже спустя почти 14 млрд. лет в космосе все еще сохранилось реликтовое излучение. Его существование в комплексе с красным смещением приводится как аргумент в подтверждение состоятельности теории Большого взрыва.

Космологическая сингулярность

Если, используя общую теорию относительности и факт непрерывного расширения Вселенной, вернутся к началу времени, то размеры мироздания будут равны нулю. Начальный момент или наука не может достаточно точно описать, используя физические знания. Применяемые уравнения, не подходят для столь малого объекта. Необходим симбиоз, способный соединить квантовую механику и общую теорию относительности, но он, к сожалению, пока еще не создан.

Эволюция Вселенной: что ее ожидает в будущем?

Ученые рассматривают два возможных варианта развития событий: расширение Вселенной никогда не закончится, или же она достигнет критической точки и начнется обратный процесс – сжатие. Этот основополагающий выбор зависит от величины средней плотности вещества, находящегося в ее составе. Если вычисленное значение меньше критического, прогноз благоприятный, если больше, то мир вернется к сингулярному состоянию. Ученые в настоящее время не знают точной величины описываемого параметра, поэтому вопрос о будущем Вселенной завис в воздухе.

Отношение религии к теории Большого взрыва

Основные вероисповедания человечества: католицизм, православие, мусульманство, по-своему поддерживают эту модель сотворения мира. Либеральные представители этих религиозных конфессий соглашаются с теорией возникновения мироздания в результате некоего необъяснимого вмешательства, определяемого как Большой взрыв.

Знакомое всему миру имя теории – «Большой взрыв» – было невольно подарено противником версии о расширении Вселенной Хойлом. Он считал такую идею «совершенно неудовлетворительной». После публикации его тематической лекций занятный термин тут же подхватила общественность.

Причины, вызвавшие Большой взрыв, достоверно неизвестны. По одной из многочисленных версий, принадлежащей А. Ю. Глушко, сжатое в точку исходное вещество было черной гипер-дырой, а причиной взрыва стал контакт двух таких объектов, состоящих из частиц и античастиц. При аннигиляции материя частично уцелела и дала начало нашей Вселенной.

Инженеры Пензиас и Уилсон, открывшие реликтовое излучение Вселенной, получили Нобелевские премии по физике.

Показатели температуры реликтового излучения изначально было очень высоким. Спустя несколько миллионов лет этот параметр оказался в пределах, обеспечивающих зарождение жизни. Но к этому периоду успело сформироваться лишь небольшое количество планет.

Астрономические наблюдения и исследования помогают найти ответы на важнейшие для человечества вопросы: «Как все появилось, и что ждет нас в будущем?». Вопреки тому, что не все проблемы решены, и первопричина появления Вселенной не имеет строгого и стройного разъяснения, теория Большого взрыва обрела достаточное количество подтверждений, делающих ее основной и приемлемой моделью возникновения мироздания.

1. Основные космологические гипотезы

2. Концепция Большого взрыва

3. Проблема существования и поиска внеземных цивилизаций

Список используемой литературы

1. Основные космологические гипотезы

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально.

1. Классическая космологическая модель . Успехи космологии и космогонии 18-19 вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Вселенная в этом представлении о мире считается бесконечной в пространстве и во времени, т.е. вечной. Основной закон, управляющий движением и развитием небесных тел, - закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Количество звезд, звездных систем и планет во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее погасшим, звездам приходят новые, молодые светила. В таком виде классическая космологическая модель Вселенной господствовала в науке вплоть до конца 19 в.

К концу 19 века появились серьезные сомнения в классической модели, которые приняли форму космологических парадоксов - фотометрического, гравитационного и термодинамического.

В 18 веке швейцарский астроном Р. Шезо высказал сомнения по поводу пространственной бесконечности Вселенной. Если предположить, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит, поэтому данное парадоксальное утверждение получило в астрономии название фотометрического парадокса Шезо-Ольберса.

В конце 19в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также вытекающий из представлений о бесконечности Вселенной. В бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной (результат зависит от способа вычисления). Поскольку этого не происходит, Зеелигер сделал вывод, что кол-во небесных тел во Вселенной ограничено, а значит и сама Вселенная небесконечна. Это утверждение получило название гравитационного парадокса.

Термодинамический парадокс был сформулирован также в 19в. Он вытекает из второго начала термодинамики- принципа возрастания энтропии. Мир полон энергии, которая подчиняется закону сохранения энергии. Кажется, что из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. Если в природе материя не исчезает и не возникает из ничего, а лишь переходит из одной формы существования в другую, то Вселенная вечна, а материя пребывает в постоянном круговорте. Таким образом, погасшие звезды снова превращаются в источник света и тепла.

Поэтому неожиданно прозвучал вывод из второго начала термодинамики, открытого в середине 19в. Кельвином и Р.Ю.Э. Клаузисом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как такой процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся, наступит «тепловая смерть Вселенной».

Таким образом, три космологических парадокса заставили ученных усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

4. Релятивистская модель Вселенной. Новая модель Вселенной была создана в 1917 году А. Эйнштейном. Ее основу составила релятивистская теория тяготения. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства; материя распределена в нем равномерно; время бесконечно, а его течение не влияет на свойства Вселенной. На основании своих расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

Объем такой Вселенной может быть выражен, хотя и очень большим, но конечным числом кубометров. Но конечная по объему Вселенная в то же время безгранична, как поверхность любой сферы. Вселенная Эйнштейна содержит ограниченное число звезд и звездных систем, и поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку на статичность мира.

5. Модель расширяющейся Вселенной. В 1922 г., советский геофизик и математик А.А. Фридман на основании строгих расчетов установил, что Вселенная никак не может быть стационарной. Фридман сделал это открытие, опираясь на сформулированный им космологический принцип, строящийся на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной.

Фридман доказал, что уравнения Эйнштейна имеют решения, согласно которым Вселенная может расширяться либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э.П. Хаббл обнаружил эффект «красного смещения» спектральных линий. Это было истолковано как следствие эффекта Доплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием (примерно 55 км/с на каждый миллион парсек).

В результате своих наблюдений Хаббл обосновал представление, согласно которому Вселенная – это множество галактик, разделенных между собой огромными расстояниями.

Фридман предложил три модели Вселенной.

1. Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, образуя сферу.

2. Вселенная расширяется бесконечно, пространство искривлено и бесконечно.

3. пространство плоское и бесконечное.

По какому из этих вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлета вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют «открытой Вселенной».

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности. Такой вариант модели назван осциллирующей, или «закрытой Вселенной».

В случае, когда силы гравитации равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю.

2. Концепция Большого взрыва

Представление о развитии Вселенной привело к постановке вопроса о начале эволюции (рождении) Вселенной и ее конце (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причины и процесс рождения самой Вселенной. Только теория Большого взрыва Г.А. Гамова смогла к настоящему времени объяснить почти все факты, связанные с этой проблемой. Основные черты этой модели сохранились до сих пор, хотя она была позже дополнена теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом, и дополненной советским физиком А.Д. Линде.

В 1948 году Гамов выдвинул предположение, что Вселенная образовалась в результате гигантского взрыва, произошедшего примерно 15 млрд лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был равен нулю, а ее плотность – бесконечности. Это начальное состояние называется сингулярностью.

Но по принципу неопределенности В. Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры.

Окружающий нас мир велик и многообразен. Все, что окружает нас, будь то другие люди, животные, растения, видимые только под микроскопом мельчайшие частички и гигантские скопления звезд, микроскопические атомы и огромные туманности, составляет то, что принято называть Вселенной.
С незапамятных времен человеческий разум интересует вопрос о возникновении мира. Еще не существовало таких понятий как религия и наука, а человек уже задумывался о мироустройстве и своем положении в окружавшем его пространстве.
Возникновение Вселенной и на данный момент остается одной из самых интересных и не изученных загадок современной космологии. Как появилась Вселенная, какие процессы способствовали возникновению звезд, солнечных систем, галактик, планет, что было до появления Вселенной, имеет ли она начало и конец? Вот лишь немногие вопросы, ответы на которые пытаются получить современные ученые.
Вопрос о происхождении Вселенной является своего рода основополагающим. Загадка возникновения жизни на Земле, а также возможности зарождения жизни на других планетах, так или иначе раскрывается, исходя из теорий о рождении Вселенной.
Итак, гипотез о возникновении Вселенной существует множество, это и научные концепции, и отдельные теории, и религиозные учения, и философские представления, и мифы о сотворении мира древних июлей. Однако все их можно условно разделить на две группы:
1. Теории возникновения Вселенной (в первую очередь религиозные), в которых в качестве созидающего фактора выступает Творец. Иными словами, согласно им, Вселенная представляет собой одухотворенное и осознанное творение, появившееся в результате воли Высшего разума;
2. Теории возникновения Вселенной, основывающиеся на научных факторах и отвергающие как само понятие Творца, так и его участие в создании мира. Они часто основываются на принципе заурядности, который рассматривает возможность существования жизни не только на нашей, но и на других планетах, находящихся в других солнечных системах или даже галактиках.
Различие этих концепций кроется, в первую очередь, в разных терминологиях, например, природа - творец, сотворение - происхождение. Зато в некоторых других вопросах отдельные научные и религиозные теории пересекаются или даже повтори ют друг друга.
Кроме различных концепций о происхождении Вселенной существуют также религиозные и научные датировки этого грандиозного события. Так, самая распространенная научная теория о возникновении Вселенной - теория Большого взрыва - утверждает, что Вселенная возникла примерно 13 млрд лет назад.
По различным христианским источникам, от сотворения мира Богом до рождения Иисуса Христа прошло от 3483 до 6984 лет. В индуизме с момента начала мироздания прошло примерно 155 трлн лет.
Однако рассмотрим некоторые концепции возникновения Вселенной подробнее.

Космологическая модель Канта

До начала XX в. среди ученых господствовала теория о том, что Вселенная бесконечна в пространстве и времени, статична и однородна. Еще Исаак Ньютон сделал предположение о том, что она безгранична в пространстве, а немецкий философ Эммануил Кант, основываясь на работах Ньютона и развивая его идеи, выдвинул теорию о том, что у Вселенной также нет начала и во времени. Он ссылался на законы механики и ими объяснял все происходящие во Вселенной процессы.
В своей теории Кант продвинулся еще дальше, распространив ее также и на биологию. Он утверждал, что в не имеющей начала и конца древней и огромной Вселенной существует бесконечное число возможностей, благодаря которым на свет может появиться любой биологический продукт. Эта теория о возможности возникновения жизни во Вселенной позднее легла в основу теории Дарвина.
Космологическая модель Канта нашла подтверждение благодаря наблюдениям астрономов XVIII- XIX вв. за движениями светил и планет. В скором времени его гипотеза стала теорией, которая к началу XX в. уже считалась единственно верной. Она не вызывала сомнений, даже несмотря на светометрический парадокс, или парадокс темного ночного неба, заключающийся в том, что в бесконечной Вселенной существует нескончаемое количество звезд, сумма яркостей которых должна образовывать бесконечную яркость. Иными словами, ночное небо было бы полностью покрыто яркими звездами, а в реальности оно тёмное, так как количество звезд и галактик исчислимо.

Модель Вселенной Эйнштейна (статическая Вселенная)

В 1916 г. увидел свет труд Альберта Эйнштейна Основы общей теории относительности», а уже и 1917 г. на основе уравнений этой теории он развил свою модель Вселенной.
Большинство ученых того времени сходилось но мнении, что Вселенная стационарна, и Эйнштейн также придерживался этого мнения, поэтому старался создать такую модель, в которой Вселенная не должна была расширяться или сжиматься. Это местами шло вразрез с его собственной теорией относительности, из уравнений которой следует, что Вселенная расширяется и одновременно происходи се торможение. Поэтому Эйнштейн ввел такое понятие, как космическая сила отталкивания, которая уравновешивает притяжение звезд и прекращает движение небесных тел, благодаря чему Вселенная остается статической.
Вселенная Эйнштейна имела конечные размеры, но вместе с тем у нее не было границ, что возможно только в том случае, когда пространство искривлено, как, например, в сфере.
Итак, пространство в модели Эйнштейна было трехмерным, оно замыкало само себя и было однородным, т.е. у него не было центра и краев, и в нем равномерно рас полагались галактики.

Модель расширяющейся Вселенной (Вселенная Фридмана, нестационарная Вселенная)

В 1922 г. советский ученый А. А. Фридман разработал первую нестационарную модель Вселенной, которая также была основана на уравнениях общей теории относительности. Работы Фридмана остались в то время незамеченными, а А. Эйнштейн отвергал возможность расширения Вселенной.
Тем не менее, уже в 1929 г. астроном Эдвин Хаббл открыл, что галактики, находящиеся рядом с Млечным путем, удаляются от него, а скорость их движения при этом все время остается пропорциональной расстоянию до нашей галактики. Согласно этому открытию, звезды и галактики постоянно «разбегаются» друг от друга, а следовательно, происходит расширение Вселенной. В итоге Эйнштейн согласился с выводами Фридмана, а позднее говорил, что именно советский ученый стал основателем теории расширяющейся Вселенной.
Эта теория не находится в противоречии с общей теорией относительности, но если Вселенная расширяется, то должно было произойти некое событие, приведшее к разбеганию звезд и галактик. Это явление очень напоминало взрыв, поэтому ученые и назвали его «Большим взрывом». Однако если Вселенная появилась в результате Большого взрыва, то должна существовать Высшая первопричина (или Конструктор), позволяющая этому взрыву произойти.

Теория Большого взрыва

Теория Большого взрыва строится на том, что материя и энергия, из которых состоит все сущее но Вселенной, ранее находились в сингулярном состоянии, т.е. в состоянии, характеризующемся бесконечной температурой, плотностью и давлением. В состоянии сингулярности не действует ни один закон физики, а все, из чего на данный момент состоит Вселенная, заключалось в микроскопически малой частичке, которая в какой-то момент времени пришла в нестабильное состояние, в результате чего и произошел Большой взрыв.
Изначально теория Большого взрыва носила название «динамическая эволюционирующая модель». Термин «Большой взрыв» получил широкое распространение в 1949 г. после публикации работ ученого Ф. Хойла.
На данный момент теория Большого взрыва разработана настолько хорошо, что ученые берутся описать процессы, которые начали происходить во Вселенной через 10-43 с после Большого взрыва.
Существует несколько доказательств теории Большого взрыва, одним из которых является реликтовое излучение, пронизывающее всю Вселенную и возникшее в результате Большого взрыва благодаря взаимодействию частиц. Реликтовое излучение может рассказать о первых микросекундах после рождения Вселенной, о тех временах, когда она находилась и горячем состоянии, а галактики, звезды и планеты еще не образовались.
Изначально реликтовое излучение также было только теорией, и вероятность его существования рассматривал Г. А. Гамов в 1948 г. Измерить реликтовое излучение и доказать действительность его существования смогли только в 1964 г. американские ученые благодаря новому прибору, который обладал необходимой точностью. После этого реликтовое излучение печально исследовали с помощью наземных и космических обсерваторий, что позволило увидеть, какой была Вселенная в момент своего рождения.
Еще одним подтверждением Большого взрыва является космологическое красное смещение, которое заключается в уменьшении частот излучения, что доказывает удаление звезд и галактик друг от друга вообще, и от Млечного пути в частности.
Теория Большого взрыва ответила на множество вопросов о возникновении нашей Вселенной, но и вместе с тем стала причиной появления новых загадок, которые остаются без ответов и сейчас. Например, что же стало причиной Большого взрыва, почему точка сингулярности стала нестабильной, что было до Большого взрыва, как появилось время и пространство?
Многие исследователи, например Р. Пенроуз и С. Хокинг, изучая общую теорию относительности, добавили в ее уравнения такие показатели, как пространство и время. По их мнению, эти параметры также появились в результате Большого взрыва вместе с материей и энергией. Следовательно, у времени тоже есть определенное начало. Однако из этого также следует, что должна существовать некая Сущность или Высший разум, который не зависит от времени и пространства, и присутствовал всегда. Именно этот Высший разум и стал причиной возникновения Вселенной.
Изучение того, что было до Большого взрыва - новый раздел в современной космологии. На вопрос о том, что же было до рождения нашей Вселенной и что ей предшествовало, пытаются ответить многие ученые.

Большой отскок

Эта интересная альтернативная Большому взрыву теория говорит о том, что до нашей Вселенной существовала другая. Таким образом, если рождение Вселенной, а именно Большой взрыв, рассматривали как уникальное явление, то в данной теории это лишь одно звено из цепи реакций, в результате которых Вселенная постоянно воспроизводит саму себя.
Из теории следует, что Большой взрыв не является точкой начала времени и пространства, а появился и результате предельного сжатия другой Вселенной, масса которой, по этой теории, не равна нулю, а лишь близка этому значению, при этом энергия Вселенной мс бесконечна. В момент предельного сжатия Вселенная имела максимальную энергию, заключенную в минимальный объем, в результате чего произошел большой отскок, и родилась новая Вселенная, которая также начала расширяться. Таким образом, квантовые состояния, существовавшие в старой Вселенной, просто изменились в результате Большого отскока и перешли в новую Вселенную.
В основе новой модели рождения Вселенной лежит теория петлевой квантовой гравитации, которая помогает заглянуть за Большой взрыв. До этого считалось, что все во Вселенной появилось в результате взрыва, поэтому вопрос о том, что же было до него, практически не ставился.
Данная теория принадлежит к числу теорий квантовой гравитации и объединяет в себе общую теорию относительности и уравнения квантовой механики. Предложили ее в 1980-х гг. такие ученые, как Э. Аштекар и Л. Смолин.
Теория петлевой квантовой гравитации говорит о том, что время и пространство дискретны, т.е. состоят из отдельных частей, или маленьких квантовых ячеек. На малых масштабах пространства и времени ни ячейки создают разделенную прерывистую структуру, а на больших - появляется гладкое и непрерывное пространство-время.
Рождение новой Вселенной происходило в экстремальных условиях, которые заставляли квантовые ячейки отделяться друг от друга, этот процесс и был назван Большим отскоком, т.е. Вселенная не появилась из ничего, как при Большом взрыве, а начала быстро расширяться из сжатого состояния.
М. Божовальд стремился получить сведения о Вселенной, предшествующей нашей, для чего несколько упростил некоторые квантово-гравитационные модели и уравнения теории петлевой квантовой гравитации. В данные уравнения входят несколько параметров состояния нашей Вселенной, которые необходимы для того, чтобы узнать, какой была предыдущая Вселенная.
Уравнения содержат взаимодополняемые параметры, позволяющие описать квантовую неопределенность об объеме Вселенной до и после Большого взрыва, и отражают тот факт, что ни один из параметров предшествующей Вселенной не сохранился после Большого отскока, поэтому в нашей Вселенной он отсутствует. Иными словами, в результате бесконечной цепи расширения, сжатия и взрыва, а затем нового расширения образуются не одинаковые, а разные Вселенные.

Теория струн и М-теория

Идея того, что Вселенная может постоянно воспроизводить себя, многим ученым кажется разумной. Некоторые полагают, что наша Вселенная возникла в результате квантовых флуктаций (колебаний) в предшествующей Вселенной, поэтому вполне вероятно, что в какой-то момент времени и в нашей Вселенной может возникнуть такая флуктация, и появится новая Вселенная, несколько отличная от настоящей.
Ученые идут в своих рассуждениях дальше и предполагают, что квантовые колебания могут произойти в любом количестве и в любом месте Вселенной, в результате чего появляется не одна новая Вселенная, а сразу несколько. На этом строится инфляционная теория возникновения Вселенной.
Образовавшиеся Вселенные отличны друг от друга, в них действуют разные физические законы, при этом все они находятся в одной огромной мегавселенной, но изолированы друг от друга. Сторонники данной теории утверждают, что время и пространство не появились в результате Большого взрыва, а существовали всегда в нескончаемой череде сжатия и расширения Вселенных.
Своего рода развитием инфляционной теории является теория струн и ее усовершенствованный вариант - М-теория, или теория мембран, которые строятся на цикличности мироздания. Согласно М-теории, физический мир состоит из десяти пространственных и одного временного измерения. В этом мире находятся пространства, так называемые браны, одной из которых и является наша Вселенная, состоящая из тpёx пространственных измерений.
Большой взрыв - результат столкновения бран, которые под воздействием огромного количества энергии разлетелись, затем началось расширение, постепенно замедлившееся. Выделенные в результате столкновения излучение и вещество остывали, появились галактики. Между бранами находится положительная по плотности энергия, вновь ускоряющая расширение, которое через некоторое время снова замедляется. Геометрия пространства становится плоской. Когда браны вновь притягиваются друг к другу, квантовые колебания становятся сильнее, геометрия пространства деформируется, а места таких деформаций в будущем становятся зародышами галактик. Когда браны сталкиваются друг с другом, цикл повторяется.
В перечисленных выше научных концепциях возникновения Вселенной отсутствует Творец как созидающая одухотворенная сила. Однако кроме них существуют иные теории появления мироздания, в которых в качестве созидающего фактора выступает Высший разум, названный в каждой из теорий по-разному.

Креационизм

Данная мировоззренческая теория происходит от латинского слова «creations» - «творение». Согласно этой концепции, наша Вселенная, планета и само человечество являются результатом творческой деятельности Бога или Творца. Термин «креационизм» возник в конце XIX в., а сторонники этой теории утверждают истинность истории о сотворении мира, изложенной в Ветхом Завете.
В конце XIX в. происходило быстрое накопление знаний в различных областях науки (биологии, астрономии, физики), широко распространенной стала теория эволюции. Все это привело к противоречию между научными знаниями и библейской картиной мира. Можно сказать, что креационизм появился как реакция консервативных христиан на научные открытия, в частности, на эволюционное развитие живой и неживой природы, которые в это время стали доминирующими и отвергали появление всего сущего из ничего.

Христианский креационизм

Креационизм в христианстве представлен несколькими течениями, которые отличаются степенью расхождения с научными воззрениями на происхождение Вселенной и Земли.
Согласно младоземельному, или буквалистскому, креационизму мир был создан Богом за 6 дней, как о том и говорится в Библии. При этом некоторые последователи (прежде всего протестанты) этой теории утверждают, что мир был создан примерно 6 тыс. лет назад. Это утверждение основано на Масоретском тексте Ветхого Завета. Другие (в основном православные исследователи) исходят из текста Септуагинты (самого старого перевода Библии) и верят, что мир появился 7,5 тыс. лет назад.
Последователи староземельного, или метафорического, креационизма считают, что 6 дней творения - это метафора, более понятная людям того времени. В Библии слово «день» подразумевает скорее не сутки, а неопределенный отрезок времени, следовательно, в один день творения могут входить миллионы земных лет.
При это метафорический креационизм делится на следующие подвиды:
- креационизм постепенного творения. Последователи этой концепции соглашаются с некоторыми научными открытиями, в частности, принимают астрофизические датировки рождения Вселенной, звезд и планет, но не приемлют теорию эволюции образования видов в процессе естественного отбора. Они утверждают, что именно Бог влияет на появление новых и изменение существующих биологических видов;

Все слышали о теории Большого взрыва, которая объясняет (по крайней мере, на данный момент) зарождение нашей Вселенной. Однако в ученых кругах всегда найдутся желающие оспорить идеи - из этого, кстати, нередко и вырастают великие открытия.

Однако, понял Дикке, если бы эта модель была реальной, то не было бы двух видов звезд - Населения I и Населения II, молодых и старых звезд. А они были. Значит, Вселенная вокруг нас все-таки развилась из горячего и плотного состояния. Даже если это был не единственный в истории Большой взрыв.

Удивительно, правда? Вдруг этих взрывов было несколько? Десятки, сотни? Науке еще предстоит это выяснить. Дикке предложил своему коллеге Пиблсу просчитать необходимую для описанных процессов температуру и вероятную температуру остаточного излучения в наши дни. Примерные расчеты Пиблса показали, что сегодня Вселенная должна быть наполнена микроволновым излучением с температурой менее 10 К, и Ролл с Уилкинсоном уже готовились искать это излучение, когда раздался звонок…

Трудности перевода

Однако тут стоит перенестись в другой уголок земного шара - в СССР. Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович, один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова (советского физика, живушего в США), и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов.

Яков Борисович Зельдович, –

Он даже знал о статье Эда Ома в «Техническом журнале Bell System», который примерно высчитал температуру реликтового излучения, но неверно интерпретировал выводы автора. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К - это температура оставшегося фона.

Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем.

В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена. Это и стало причиной столь обидной ошибки.

Нобелевская премия, которая уплыла из рук

Вернемся в день, когда в лаборатории Дикке раздался телефонный звонок. Оказывается, в это же время астрономы Арно Пензиас и Роберт Вильсон сообщили, что им случайно удалось уловить слабый радиошум, поступающий из всего . Тогда они еще не знали, что другой коллектив ученых самостоятельно пришел к идее существования такого излучения и даже начал строить детектор для его поиска. Это был коллектив Дикке и Пиблса.

Еще удивительнее и то, что космическое микроволновое фоновое, или, как его еще называют, реликтовое, излучение было более чем за десять лет до этого описано в рамках модели возникновения Вселенной в результате Большого взрыва Георгием Гамовым и его коллегами. Ни одна, ни другая группа ученых об этом не знала.

Пензиас и Вильсон случайно узнали о работе ученых под руководством Дикке и решили им позвонить, чтобы обсудить это. Дикке внимательно выслушал Пензиаса и сделал несколько замечаний. Положив трубку, он повернулся к коллегам и сказал: «Ребята, нас обскакали».

Спустя почти 15 лет, после того как множество измерений, произведенных на самых разных длинах волн многими группами астрономов, подтвердили, что открытое ими излучение действительно реликтовое эхо Большого взрыва, имеющее температуру 2,712 К, Пензиас и Вильсон разделили Нобелевскую премию за свое изобретение. Хотя поначалу они даже не хотели писать статью о своем открытии, потому что считали его несостоятельным и не укладывающимся в модель стационарной Вселенной, которой они придерживались!

Говорят, Пензиас и Вильсон сочли бы для себя достаточным упоминание в качестве пятого и шестого имени в списке после Дикке, Пиблса, Ролла и Уилкинсона. В таком случае Нобелевская премия, видимо, ушла бы Дикке. Но все случилось так, как случилось.

P.S.: Подписывайтесь на нашу рассылку . Раз в две недели будем присылать 10 самых интересных и полезных материалов из блога МИФ.