3 закона сохранения импульса и энергии. Московский государственный университет печати

Энергия и импульс являются важнейшими понятиями физики. Оказывается, что вообще в природе законы сохранения играют важную роль. Поиск сохраняющихся величин и законов, из которых они могут быть получены, – предмет исследований во многих разделах физики. Выведем эти законы простейшим способом из второго закона Ньютона.

Закон сохранения импульса. Импульс , или количество движения p определяется как произведение массы m материальной точки на скорость V : p = m V . Второй закон Ньютона с использованием определения импульса записывается в виде

= d p = F , (1.3.1)

здесь F – равнодействующая приложенных к телу сил.

Замкнутой системой называют систему, в которой сумма внешних сил, действующих на тело равна нулю:

F = å F i = 0 . (1.3.2)

Тогда изменение импульса тела в замкнутой системе по второму закону Ньютона (1.3.1), (1.3.2) составляет

d p = 0 . (1.3.3)

В этом случае импульс системы частиц остается постоянной величиной:

p = å p i = const . (1.3.4)

Это выражение представляет собой закон сохранения импульса , который формулируется так: когда сумма внешних сил, действующих на тело или систему тел, равна нулю, импульс тела или системы тел является постоянной величиной.

Закон сохранения энергии. В обыденной жизни под понятием «работа» мы понимаем всякий полезный труд человека. В физике же изучается механическая работа , которая совершается, только когда тело перемещается под действием силы. Механическая работа ∆A определяется как скалярное произведение силы F , приложенной к телу, и перемещения тела Δr в результате действия этой силы:

AA = (F , Δr ) = F Ar cosα. (1.3.5)

В формуле (1.3.5) знак работы определяется знаком cos α.

Желая передвинуть шкаф, мы с силой на него надавливаем, но если он при этом в движение не приходит, то механической работы мы не совершаем. Можно представить себе случай, когда тело движется без участия сил (по инерции),

в этом случае механическая работа также не совершается. Если система тел может совершить работу, то она обладает энергией.

Энергия представляет собой одно из важнейших понятий не только в механике, но и в других областях физики: термодинамике и молекулярной физике, электричестве, оптике, атомной, ядерной и физике частиц.

В любой системе, принадлежащей физическому миру, энергия сохраняется при любых процессах. Меняться может лишь форма, в которую она переходит. Например, при попадании пули в кирпич часть кинетической энергии (причем, бóльшая) переходит в тепло. Причина этого – наличие силы трения между пулей и кирпичом, в котором она двигается с большим трением. При вращении ротора турбины механическая энергия превращается в электрическую энергию, а при этом в замкнутой цепи возникает ток. Энергия, выделяющаяся при сжигании химического топлива, т.е. энергия молекулярных связей, превращается в тепловую энергию. Природа химической энергии – это энергия межмолекулярных и межатомных связей, по сути, представляющая собой молекулярную или атомную энергию.

Энергия – скалярная величина, характеризующая способность тела совершить работу:

E2- E1= ∆A. (1.3.6)

При совершении механической работы энергия тела переходит из одной формы в другую. Энергия тела может быть в форме кинетической или потенциальной энергии.

Энергию механического движения

W кин = .

называют кинетической энергией поступательного движения тела. Работа и энергия в системе единиц СИ измеряется в джоулях (Дж).

Энергия может быть обусловлена не только движением тел, но и их взаимным расположением и формой. Такую энергию называют потенциальной .

Потенциальной энергией обладают друг относительно друга два груза, соединенные пружиной, или тело, находящееся на некоторой высоте над Землей. Этот последний пример относится к гравитационной потенциальной энергии, когда тело перемещается с одной высоты над Землей на другую. Она вычисляется по формуле



На рисунке изображены графики зависимости импульса от скорости движения двух тел. Масса какого тела больше и во сколько раз?

1) Массы тел одинаковы

2) Масса тела 1 больше в 3,5 раза

3) Масса тела 2 больше

4) По графикам нельзя

сравнить массы тел





Пластилиновый шарик массой т, движущийся со скоростью V , налетает на покоящийся пластилиновый шарик массой 2т. После удара шарики, слипшись, движутся вместе. Какова скорость их движения?

1) v /3

3) v /2

4) Для ответа не хватает данных


Вагоны массой m = 30 т и m = 20 т движутся по прямолинейному железнодорожному пути со скоростями, зависимость проекций которых на ось, параллельную путям, от времени показана на рисунке. Через 20 с между вагонами произошла автосцепка. С какой скоростью, и в какую сторону поедут сцепленные вагоны?

1) 1,4 м/с, в сторону начального движения 1.

2) 0,2 м/с, в сторону начального движения 1.

3) 1,4 м/с, в сторону начального движения 2 .

4) 0,2 м/с, в сторону начального движения 2 .


Энергия (Е) – физическая величина, показывающая, какую работу может совершить тело

Совершенная работа – равна изменению энергии тела



Координата тела меняется в соответствии с уравнением x : = 2 + 30 t - 2 t 2 , записанным в СИ. Масса тела 5 кг. Какова кинетическая энергия тела через 3 с после начала движения?

1) 810 Дж

2) 1440 Дж

3) 3240 Дж

4) 4410 Дж




Пружину растягивают на 2см . При этом совершается работа 2 Дж. Какую следует совершить работу, чтобы растянуть пружину еще на 4 см.

1) 16 Дж

2) 4 Дж

3) 8 Дж

4) 2 Дж




По какой из формул можно определить кинетическую энергию Е к, которую имеет тело в верхней точке траектории (см.рис.)?

2) E K =m(V 0) 2 /2 + mgh-mgH

4) E K =m(V 0) 2 /2 + mgH


Мяч бросали с балкона 3 раза с одинаковой начальной скоростью. Первый раз вектор скорости мяча был направлен вертикально вниз, второй раз - вертикально вверх, третий раз - горизонтально. Сопротивлением воздуха пренебречь. Модуль скорости мяча при подлете к земле будет:

1) больше в первом случае

2) больше во втором случае

3) больше в третьем случае

4) одинаковым во всех случаях


Парашютист равномерно опускается из точки 1 в точку 3 (рис.). В какой из точек траектории его кинетическая энергия имеет наибольшее значение?

1) В точке 1.

2) В точке 2 .

3) В точке 3.

4) Во всех точках значения

энергии одинаковы.


Съехав со склона оврага, санки поднимаются по противоположному его склону на высоту 2 м (до точки 2 на рисунке) и останавливаются. Масса санок 5 кг. Их скорость на дне оврага была равна 10 м/с. Как изменилась полная механическая энергия санок при движении из точки 1 в точку 2?

1) Не изменилась.

2) Возросла на 100 Дж.

3) Уменьшилась на 100 Дж.

4) Уменьшилась на 150 Дж.



  • 2.4. Элементы кинематики материальной точки и тела, совершающих вращательное движение: угол поворота, угловые скорость и ускорение. Их связь с линейной скоростью и линейным ускорением
  • 2.5. Гармонические колебательные движения и их характеристики: смещение, амплитуда, период, частота, фаза, скорость и ускорение
  • 2.6. Методы сложения гармонических колебаний. Векторные диаграммы. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
  • 2.7. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу
  • 3.2. Инерциальные и неинерциальные системы отсчета
  • 3.3. Описание движения в неинерциальных системах отсчета
  • 3.3.1. Силы инерции при ускоренном движении системы отсчета
  • 3.3.2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета
  • 3.3.3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (сила Кориолиса)
  • Силы инерции, возникающие в неинерциальной системе отсчета в зависимости от состояния частицы
  • 3.5. Основной закон динамики вращательного движения
  • 3.6. Сопоставление формул динамики вращательного и динамики поступательного движений
  • Сопоставление формул динамики поступательного движения и динамики вращательного движения
  • 4.1. Дифференциальное уравнение гармонических колебаний и его решение
  • 4.2. Примеры гармонических осцилляторов. Физический, математический и пружинный маятники. Определение их периодов и частот
  • 4.2.1. Пружинный маятник
  • 4.2.2. Физический и математический маятники
  • 4.3. Свободные (затухающие колебания). Дифференциальное уравнение затухающих колебаний и его решение. Характеристики затухающих колебаний
  • 4.4. Вынужденные колебания гармонического осциллятора под действием синусоидальной силы. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний
  • 5.1. Нелинейный осциллятор. Физические системы, содержащие нелинейность
  • 5.2. Автоколебания. Обратная связь. Условие самовозбуждения. Роль нелинейности. Предельные циклы
  • 6.1. Кинематика и динамика волновых процессов. Плоская стационарная и синусоидальная волна
  • 6.2. Уравнение плоской волны
  • 6.3.Волновое уравнение
  • 6.4. Интерференция волн. Стоячие волны
  • 7.1. Работа силы и её выражение через криволинейный интеграл
  • Из (7.1) следует, что при
  • Сила действует в направлении перемещения, поэтому
  • 7.1.1. Работа, совершаемая внешними силами при вращательном движении относительно неподвижной оси
  • 7.2. Мощность
  • Различают мгновенную мощность и среднюю мощность.
  • Поскольку
  • 7.3. Энергия как универсальная мера различных форм движений и взаимодействий
  • 7.4. Кинетическая энергия системы и её связь с работой внешних и внутренних сил, приложенных к системе
  • 7.5. Энергия системы, совершающей вращательное движение
  • Подставив значение VI в (7.35) будем иметь
  • То есть работа внешних сил, действующих на вращающуюся относительно неподвижной оси материальную точку (тело, систему), равна изменению кинетической энергии:
  • 7.6. Потенциальная энергия и энергия взаимодействия. Потенциальная энергия и устойчивость системы
  • 7.6.1. Связь между потенциальной энергией и силой
  • 7.6.2. Внутренняя энергия
  • 7.6.3. Силовые поля. Поле как форма существования материи. Поле как форма существования материи осуществляющая силовое взаимодействие между материальными объектами. Характеристики силовых полей
  • Второй характеристикой силового потенциального поля является потенциал.
  • 7.6.4. Потенциальная энергия материальной точки (тела, системы) во внешнем силовом поле
  • 7.6.5. Поле центральных сил. Движение в поле центральных сил
  • Элементарная работа по перемещению массы на элементарном отрезке dr:
  • Из полученного соотношения видно:
  • В случае, когда сила притяжения будет равна центростремительной силе, то
  • Подставляя значения vа и vп в формулу (7.41), будем иметь
  • Подставив в формулу (7.83) значения r и V, будем иметь t  92 мин.
  • 7.7. Энергия упругой деформации
  • 7.8. Энергия системы, совершающей колебательное движение
  • Кинетическая энергия системы, совершающей гармоническое колебание, находится по формуле
  • 8.1. Закон сохранения энергии в механике
  • 8.1.1. Общефизический закон сохранения энергии
  • 8.1.2. Закон сохранения и превращения механической энергии
  • 8.2. Закон сохранения импульса. Центр инерции. Закон движения центра инерции
  • 8.3. Закон сохранения момента импульса. Уравнение моментов
  • В векторной форме
  • 8.5. Применение законов сохранения к упругому и неупругому взаимодействиям (удару)
  • 8.5.1. Абсолютно неупругий удар шаров
  • 9.1. Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Закон сложения скоростей в классической механике
  • 9.2. Постулаты и представления о свойствах пространства и времени в специальной теории относительности
  • 9.3. Преобразования Лоренца для координат и времени
  • 9.4. Следствия из преобразований Лоренца
  • 9.4.1. Закон сложения скоростей в теории относительности
  • 9.4.2. Сокращение движущихся масштабов длин
  • 9.4.3.Замедление хода движущихся часов
  • 10.2. Четырехмерное пространство - время. Преобразования в четырехмерном пространстве
  • 10.2.1. Основные понятия
  • 10.2.2. Кинематика четырехмерного пространства-времени
  • 10.2.3. Динамика четырехмерного пространства-времени
  • 10.3. Столкновения релятивистских частиц. Законы сохранения энергии и импульса
  • 10.4. Значение теории относительности
  • Библиографический список
  • 8.3. Закон сохранения момента импульса. Уравнение моментов

    Известно, что моментом импульса (моментом количества движения) материальной точки называется векторная физическая величина, численно равная произведению ее импульса (количества движения) на плечо, т.е. на кратчайшее расстояние от направления импульса до оси (или центра) вращения:

    L i = m i v i r i = m i ω i r i r i = m i r i 2 ω i = I i ω, (8.22)

    где I i - момент инерции материальной точки относительно выбранной оси (выбранного центра) вращения;

    ω - угловая скорость материальной точки.

    В векторной форме

    L i = I i ω или L = [r p ]. (8.23)

    Момент импульса твердого тела (системы) относительно выбранной оси (или центра) вращения равен сумме моментов импульса отдельно взятых материальных точек тела (тел системы) относительно той же оси (того же центра) вращения. При этом

    L = Iω , (8.24)

    где - момент инерции тела (системы);

    ω - угловая скорость.

    Основное уравнение динамики вращательного движения материальной точки имеет вид

    , (8.25)

    где L i - момент импульса материальной точки относительно начала координат;

    - суммарный вращающий момент, действующий на i-ю материальную точку;

    - результирующий момент всех внутренних сил, действующих на материальную точку;

    - результирующий момент всех внешних сил, действующих на материальную точку.

    Для тела, состоящего из n материальных точек (системы из n тел):

    . (8.26)

    Так как
    -момент всех внутренних сил равен нулю, то

    или
    , (8.27)

    где L 0 - момент импульса тела (системы) относительно начала координат;

    M вн - суммарный вращающий момент внешних сил, действующих на тело (систему).

    Из (8.27) следует, что момент импульса тела (системы) может изменяться под действием момента внешних сил, а скорость его изменения равна суммарному вращающему моменту внешних сил, действующих на тело (систему).

    Если M вн = 0, то

    , а L 0 = const. (8.28)

    Таким образом, если на тело (замкнутую систему) не действует внешний вращающий момент, то его момент импульса остается величиной постоянной. Данное утверждение и называют законом сохранения момента импульса .

    Для реальных систем закон сохранения момента импульса можно записать так

    , а L 0  x = const. (8.29)

    Из закона сохранения момента импульса следует: если тело не вращалось

    (ω = 0), то при M = 0 оно и не придет во вращение; если тело совершало вращательное движение, то при M = 0, оно будет совершать равномерное вращательное движение.

    Уравнения
    ,
    называют уравнениями моментов , соответственно для тела (системы) или материальной точки.

    Уравнение моментов указывает, как изменяется момент импульса под действием сил. Так как dL 0 = M ∙dt, то момент сил, совпадающий по направлению с моментом импульса, увеличивает его. Если же момент сил направлен навстречу моменту импульса, то последний уменьшается.

    Уравнение моментов справедливо для любой произвольно выбранной неподвижной оси вращения.

    Приведем несколько примеров:

    а) когда кошка неожиданно для себя падает с большой высоты, она усиленно вращает хвостом в ту или иную сторону, добиваясь оптимального разворота своего тела для благоприятного приземления;

    б) человек перемещается по краю круглой, свободно вращающейся платформы: пусть моменты импульса платформы и человека соответственно равны и, тогда, принимая систему замкнутой, получим

    , ,
    .

    Т.е. угловые скорости вращения этих тел вокруг их общей оси будут обратны по знаку, а по величине – обратно пропорциональны их моментам инерции;

    в) опыт со скамьей Жуковского. Человек, находящийся посередине скамьи и вращающийся вместе с платформой, притягивает к себе грузы. Пренебрегая трением в опорных подшипниках, считаем момент силы равным нулю:

    ,
    ,
    .

    ,
    .

    При
    ,
    , если же
    , то
    ;

    г)при фигурном катании на коньках спортсмен, выполняя вращение, складывается и при этом ускоряет свое вращение;

    д) гироскопы - устройства, принцип действия которых основан на законе сохранения момента импульса тела:
    . Предназначены для фиксирования первоначально заданного направления в пространстве на объекте, который перемещается в произвольном направлении и неравномерно (космические ракеты, танки и др.).

    Движение тела с постоянной скоростью, как следует из законов Ньютона, может быть осуществлено двумя способами: либо без действия на данное тело сил, либо при действии сил, геометрическая сумма которых равна нулю. Между ними есть принципиальное различие. В первом случае не совершается работа, во втором - силами совершается работа.

    Термин «работа» употребляют в двух значениях: для обозначения процесса и для обозначения скалярной физической величины, которая выражается произведением проекции силы на направление перемещения на длину вектора перемещения формула" src="http://hi-edu.ru/e-books/xbook787/files/f150.gif" border="0" align="absmiddle" alt="

    В математике скалярное произведение двух векторов на косинус угла между ними называют скалярным произведением векторов , поэтому работа равна скалярному произведению вектора силы F и вектора перемещения формула" src="http://hi-edu.ru/e-books/xbook787/files/f152.gif" border="0" align="absmiddle" alt="

    Если угол между направлением силы и направлением перемещения острый, то сила совершает положительную работу, если тупой, то работа силы отрицательна.

    В общем случае, когда сила меняется произвольным образом и траектория тела произвольна, вычисление работы оказывается не таким уж простым делом. Весь путь тела разбивают на столь малые участки, чтобы на каждом из них силу можно было считать постоянной. На каждом из таких участков находят элементарную работу формула" src="http://hi-edu.ru/e-books/xbook787/files/f154.gif" border="0" align="absmiddle" alt="

    Полная работа при перемещении тела из точки 1 в точку 2 равна площади фигуры под графиком F(r) , рис. 18.

    В практической деятельности важно знать быстроту выполнения работы. Величина, характеризующая скорость совершения работы, называется мощностью.

    Мощность численно равна отношению работы формула" src="http://hi-edu.ru/e-books/xbook787/files/f156.gif" border="0" align="absmiddle" alt=", за который она совершается:

    опред-е">среднюю мощность , а предел этого отношения при опред-е">мгновенную мощность :

    пример">dA = опред-е">мощность определяется скалярным произведением векторов действующей силы и скорости движения тела :

    пример"> v различна по отношению к двум системам отсчета, движущимся относительно друг друга.

    Способность конкретного тела совершать работу характеризуют с помощью энергии.

    Вообще энергия выступает в физике как единая и универсальная мера различных форм движения материи и соответствующих им взаимодействий .

    Поскольку движение - неотъемлемое свойство материи, то любое тело, система тел или полей обладают энергией. Поэтому энергия системы количественно характеризует эту систему в отношении возможных в ней превращений движения. Понятно, что эти превращения происходят вследствие взаимодействий между частями системы, а также между системой и внешней средой. Для различных форм движения и соответствующих им взаимодействий вводят различные виды энергии - механическую, внутреннюю, электромагнитную, ядерную и т.д.

    Мы рассмотрим механическую энергию . Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно охарактеризовать процесс обмена энергией между взаимодействующими телами в механике используется понятие работы силы. В механике различают кинетическую и потенциальную энергии.

    Кинетической энергией движущейся материальной точки называют величину, определяемую как половину произведения массы точки на квадрат ее скорости:

    пример">m , движущегося поступательно со скоростью v , равна также пример">F действует на покоящееся тело и вызывает его движение со скоростью v , то она совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Приращение кинетической энергии рассматриваемого тела равно суммарной работе всех сил, действующих на тело:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f165.gif" border="0" align="absmiddle" alt=" - разность между конечным и начальным значениями кинетической энергии.

    Утверждение (3.1) называется теоремой об изменении кинетической энергии .

    Силы, действующие на тело, могут различаться по своей природе и свойствам. В механике сложилось разделение сил на консервативные и неконсервативные .

    Консервативными (потенциальными) называются силы , работа которых не зависит от траектории движения тела, а определяется только начальным и конечным его положением, поэтому работа по замкнутой траектории всегда равна нулю. Такими силами являются, например, сила тяжести и сила упругости.

    Неконсервативными (диссипативными) называются силы , работа которых зависит от формы траектории и пройденного пути. Неконсервативными являются, например, сила трения скольжения, силы сопротивления воздуха или жидкости.

    В общем случае работа любых консервативных сил может быть представлена как убыль некоторой величины П , которую называют потенциальной энергией тела:

    опред-е">Убыль величины отличается от приращения знаком опред-е">Потенциальная энергия - часть механической энергии системы , определяемой взаимным расположением тел и характером взаимодействия между ними.

    Потенциальная энергия определяется работой, которую совершили бы действующие консервативные силы, перемещая тело из начального состояния, где можно соответствующим выбором координат считать, что потенциальная энергия П1 равна нулю, в данное положение.

    Выражение (3.2) можно записать в виде:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f169.gif" border="0" align="absmiddle" alt="

    Следовательно, если известна функция П , то (3.3) полностью определяет силу F по модулю и направлению:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f171.gif" border="0" align="absmiddle" alt="

    Вектор, стоящий в (3.4) справа в квадратных скобках и построенный с помощью скалярной функции П , называется градиентом функции П и обозначается gradП . Обозначение пример">П по направлению х , соответственно пример">у , а пример">z .

    Тогда можно сказать, что сила, действующая на материальную точку в потенциальном поле, равна взятому с обратным знаком градиенту потенциальной энергии этой точки:

    пример">х из начального состояния 1 в конечное состояние 2:

    опред-е">Потенциальная энергия может иметь различную физическую природу и конкретный вид функции П зависит от характера силового поля. Например , потенциальная энергия тела массы m , находящегося на высоте h над поверхностью земли, равна П = mgh , если за нулевой уровень условно принята поверхность земли. Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение.

    Потенциальная энергия тела, находящегося под действием упругой силы деформированной пружины равна пример">х - величина деформации пружины, k - жесткость пружины.

    Можно найти работу против сил упругости. Приложим к упругому телу силу F = -kх , тогда работа при удлинении от формула" src="http://hi-edu.ru/e-books/xbook787/files/f179.gif" border="0" align="absmiddle" alt=":

    опред-е">функцией состояния системы . Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

    Работа силы трения зависит от пути, а значит, и формы траектории. Следовательно, сила трения является неконсервативной.

    Физическую величину, равную сумме кинетической и потенциальной энергий тела, называют его механической энергией Е = пример">П .

    Можно показать, что приращение механической энергии равно суммарной работе формула" src="http://hi-edu.ru/e-books/xbook787/files/f183.gif" border="0" align="absmiddle" alt="

    Следовательно, если неконсервативные силы отсутствуют или таковы, что не совершают работы над телом в течение интересующего нас времени, то механическая энергия тела остается постоянной за это время: Е= const . Это утверждение известно как закон сохранения механической энергии .

    Рассмотрим систему N частиц, между которыми действуют только консервативные силы формула" src="http://hi-edu.ru/e-books/xbook787/files/f185.gif" border="0" align="absmiddle" alt=".

    Запишем второй закон Ньютона для всех N частиц системы:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f187.gif" border="0" align="absmiddle" alt="), их сумма равна нулю..gif" border="0" align="absmiddle" alt=" - импульс всей системы.

    В результате сложения уравнений получаем

    опред-е">закон изменения импульса системы .

    Для системы частиц часто пользуются тем или иным усреднением. Это гораздо удобней, чем следить за каждой отдельной частицей. Таким усреднением является центр масс - точка, радиус-вектор которой определяется выражением:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f192.gif" border="0" align="absmiddle" alt=" - масса частицы, имеющей радиус-вектор пример">m - масса системы, равная сумме масс всех ее частиц.

    Поскольку масса является мерой инертности, центр масс называют центром инерции системы . Иногда его называют также центром тяжести, имея в виду, что в этой точке приложена равнодействующая сил тяжести всех частиц системы.

    При движении системы центр масс изменяется со скоростью

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f195.gif" border="0" align="absmiddle" alt=" - импульс системы, равный векторной сумме импульсов всех ее частиц.

    На основании (3.8) выражение (3.6) можно представить в виде:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f197.gif" border="0" align="absmiddle" alt=" - ускорение центра инерции системы.

    Таким образом, центр инерции системы движется под действием внешних сил, как материальная точка с массой, равной массе всей системы.

    Правая часть (3.6) может быть равна нулю в двух случаях: если система замкнута или если внешние силы компенсируют друг друга. В этих случаях получаем:

    опред-е">Если сумма внешних сил равна нулю (система является замкнутой), импульс системы тел остается постоянным при любых происходящих в ней процессах (закон сохранения импульса).

    Уравнение (3.9) - закон сохранения импульса замкнутой системы - один из важнейших законов природы. Как и закон сохранения энергии, он выполняется всегда и везде - в макромире, микромире и в масштабах космических объектов.

    Особая роль физических величин - энергии и импульса объясняется тем, что энергия характеризует свойства времени, а импульс - свойства пространства: их однородность и симметрию .

    Однородность времени означает, что любые явления в разные моменты времени протекают совершенно одинаково.

    Однородность пространства означает, что в нем нет никаких ориентиров, никаких особенностей. Поэтому невозможно определить положение частицы «относительно пространства», его можно определить только относительно другой частицы. Любые физические явления во всех точках пространства протекают совершенно одинаково.

    Опред-е">абсолютно упругими (или просто упругими). Так, например, можно считать абсолютно упругим центральное столкновение двух стальных шаров.

    опред-е">неупругими . Изменение механической энергии при таких столкновениях, как правило, характеризуется убылью и сопровождается, например, выделением тепла. Если тела после столкновения движутся как единое целое, то такое столкновение называют абсолютно неупругим.

    Неупругий удар. Пусть рассмотренные выше шары после удара движутся как одно целое со скоростью u . Используем закон сохранения импульса:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f222.gif" border="0" align="absmiddle" alt="

    Механическая энергия системы в случае неупругого удара не сохраняется , т.к. действуют неконсервативные силы. Найдем уменьшение кинетической энергии шаров. До удара их энергия равна сумме энергий обоих шаров:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f224.gif" border="0" align="absmiddle" alt="

    Изменение энергии

    опред-е">Пример использования законов сохранения импульса и механической энергии

    ЗАДАЧА. Пуля массой m , летевшая горизонтально со скоростью v , попадает в шар массой М , подвешенный на нити, и застревает в нем. Определить высоту h , на которую поднимется шар вместе с пулей.

    опред-е">РЕШЕНИЕ

    Столкновение пули и шара - неупругое. Согласно закону сохранения импульса для замкнутой системы пуля - шар можно записать:

    пример">u - скорость шара и пули.

    По закону сохранения механической энергии:

    формула" src="http://hi-edu.ru/e-books/xbook787/files/f229.gif" border="0" align="absmiddle" alt="

    Контрольные вопросы и задачи

    1. Что такое работа силы? Как графически определить работу силы?

    2. Дайте определение кинетической энергии тела.

    3. В чем заключается теорема об изменении кинетической энергии тела?

    4. Что характеризует потенциальная энергия?

    5. Как определить конкретный вид потенциальной энергии тела в том или ином силовом поле?

    6. Каково изменение потенциальной энергии пружины жесткостью k при ее растяжении на ?

    7. Что такое полная механическая энергия?

    8. Сформулируйте закон сохранения механической энергии тела.

    9. Что такое мощность? От чего она зависит?

    10. Как математически записывается закон сохранения импульса?

    11. Какие частные случаи выполнения закона сохранения импульса Вы знаете?

    12. Какими уравнениями можно описать абсолютно упругое и абсолютно неупругое столкновение двух тел?

    Е полн =Е кин + U

    Е кин = mv 2 /2 + Jw 2 /2 – кинетическая энергия поступательного и вращательного движения,

    U = mgh – потенциальная энергия тела массы m на высоте h над поверхностью Земли.

    F тр = кN – сила трения скольжения, N – сила нормального давления, к – коэффициент трения.

    В случае нецентрального удара закон сохранения импульса

    Sр i = constзаписывается в проекциях на оси координат.

    Закон сохранения момента импульса и закон динамики вращательного движения

    SL i = const– закон сохранения момента импульса,

    L ос = Jw - осевой момент импульса,

    L орб = [rp ] –орбитальный момент импульса,

    dL/dt=SM внеш – закон динамики вращательного движения,

    М = [rF ] = rFsina – момент силы, F – сила, a - угол между радиусом – вектором и силой.

    А = òМdj - работа при вращательном движении.

    Раздел механика

    Кинематика

    Задача

    Задача. Зависимость пройденного телом пути от времени даётся уравнением s = A–Bt+Ct 2 . Найти скорость и ускорение тела в момент времени t.

    Пример решения

    v = ds/dt = -B + 2Ct , a = dv/dt =ds 2 /dt 2 = 2C.

    Варианты

    1.1. Зависимость пройденного телом пути от времени дается

    уравнением s = A + Bt + Ct 2 , где А = 3м, В = 2 м/с, С = 1 м/с 2 .

    Найти скорость за третью секунду.

    2.1. Зависимость пройденного телом пути от времени дается

    уравнением s= A+Bt+Ct 2 +Dt 3 , где С = 0,14м/с 2 и D = 0,01 v/c 3 .

    Через сколько времени после начала движения ускорение тела

    будет равно 1 м/с 2 .

    3.1.Колесо, вращаясь равноускоренно, достигло угловой скорости

    20 рад/c через N = 10 оборотов после начала движения. Найти

    угловое ускорение колеса.

    4.1.Колесо радиусом 0,1 м вращается так, что зависимость угла

    j =А +Bt +Ct 3 , где В=2 рад/с и С = 1рад/с 3 . Для точек, лежащих

    на ободе колеса, найти через 2 с после начала движения:

    1) угловую скорость, 2) линейную скорость, 3) угловое

    ускорение, 4) тангенциальное ускорение.

    5.1.Колесо радиусом 5 см вращается так, что зависимость угла

    поворота радиуса колеса от времени дается уравнением

    j =А +Bt +Ct 2 +Dt 3 , где D = 1 рад/с 3 . Найти для точек, лежащих

    на ободе колеса изменение тангенциального ускорения за



    каждую секунду движения.

    6.1.Колесо радиусом 10 см вращается так, что зависимость

    линейной скорости точек, лежащих на ободе колеса, от

    времени дается уравнением v = At +Bt 2 , где А = 3 см/с 2 и

    В = 1 см/с 3 . Найти угол, составляемый вектором полного

    ускорения с радиусом колеса в момент времени t = 5с после

    начала движения.

    7.1.Колесо вращается так, что зависимость угла поворота радиуса

    колеса от времени дается уравнением j =А +Bt +Ct 2 +Dt 3 , где

    В = 1 рад/с, С =1 рад/с 2 ,D = 1 рад/с 3 . Найти радиус колеса,

    если известно, что к концу второй секунды движения

    нормальное ускорение точек, лежащих на ободе колеса равно

    а n = 346 м/с 2 .

    8.1.Радиус вектор материальной точки изменяется со временем по

    закону R =t 3 I + t 2 j. Определите для момента времени t = 1 с:

    модуль скорости и модуль ускорения.

    9.1.Радиус вектор материальной точки изменяется со временем по

    закону R =4t 2 I + 3t j +2к. Запишите выражение для вектора

    скорости и ускорения. Определите для момента времени t = 2 с

    модуль скорости.

    10.1.Точка движется в плоскости ху из положения с координатами

    х 1 = у 1 = 0 со скоростью v = Ai +Bxj . Определить уравнение

    траектории точки у(х) и форму траектории.

    Момент инерции

    расстоянии L/3 от начала стержня.

    Пример решения.

    M - масса стержня J = J ст + J гр

    L – длина стержня J ст1 = mL 2 /12 – момент инерции стержня

    2m – масса грузика относительно его центра. По теореме

    Штайнера находим момент инерции

    J = ? стержня относительно оси о, отстоящей от центра на расстояние а = L/2 – L/3 = L/6.

    J ст = mL 2 /12 + m(L/6) 2 = mL 2 /9.

    Согласно принципу суперпозиции

    J = mL 2 /9 + 2m(2L/3) 2 = mL 2 .

    Варианты

    1.2. Определить момент инерции стержня массой 2m относительно оси, отстоящей от начала стержня на расстояние L/4. На конце стержня сосредоточенная масса m.

    2.2.Определить момент инерции стержня массой m относительно

    оси, отстоящей от начала стержня на расстояние L/5. На конце

    стержня сосредоточенная масса 2m.

    3.2. Определить момент инерции стержня массой 2m относительно оси, отстоящей от начала стержня на расстояние L/6. На конце стержня сосредоточенная масса m.

    4.2. Определить момент инерции стержня массой 3m относительно оси, отстоящей от начала стержня на расстояние L/8. На конце стержня сосредоточенная масса 2m.

    5.2. Определить момент инерции стержня массой 2m относительно оси, проходящей через начало стержня. К концу и середине стержня прикреплены сосредоточенные массы m.

    6.2. Определить момент инерции стержня массой 2m относительно оси, проходящей через начало стержня. К концу стержня прикреплена сосредоточенная масса 2m, а к середине прикреплена сосредоточенная масса 2m.

    7.2. Определить момент инерции стержня массой m относительно оси, отстоящей от начала стержня на L/4. К концу и середине стержня прикреплены сосредоточенные массы m.

    8.2. Найти момент инерции тонкого однородного кольца массы m и радиусом r относительно оси, лежащей в плоскости кольца и отстоящей от его центра на r/2.

    9.2. Найти момент инерции тонкого однородного диска массы m и радиусом r относительно оси, лежащей в плоскости диска и отстоящей от его центра на r/2.

    10.2. Найти момент инерции однородного шара массы m и радиусом

    r относительно оси, отстоящей от его центра на r/2.