Хомченко г. п

Название : Пособие по химии для поступающих в ВУЗы. 2002.

В пособии освещены все вопросы приемных экзаменов по химии. Для лучшего усвоения курса химии приведены некоторые дополнительные сведения. В конце каждой главы даются типовые задачи с решениями и задачи для самостоятельной работы.

Книга предназначена поступающим в ВУЗы. Она также может быть рекомендована преподавателям химии при подготовке учащихся к сдаче выпускных экзаменов за курс средней школы.

Содержание
Предисловие
Введение
§ 1. Предмет химии
§ 2. Роль химии в промышленности и сельском хозяйстве.
§ 3. Химия и экология
ЧАСТЬ 1. ОБЩАЯ ХИМИЯ.
Глава 1. Основные понятия и законы химии
§ 1.1. Атомно-молекулярное учение в химии
§ 1.2. Химические элементы
§ 1.3. Простые и сложные вещества. Аллотропия
§ 1.4. Относительная атомная масса
§ 1.5. Относительная молекулярная масса
§ 1.6. Моль. Молярная масса
§ 1.7. Химические знаки, формулы и уравнения
§ 1.8. Химические реакции. Классификация реакций
§ 1.9. Закон сохранения массы веществ
§ 1.10. Закон постоянства состава вещества
§ 1.11. Газовые законы. Закон Авогадро. Молярный объем газа
§ 1.12. Решение типовых задач
Глава 2. Периодический закон Д. И. Менделеева и строение атомов
§ 2.1. Открытие Д. И. Менделеевым периодического закона
§ 2.2. Периодическая система элементов Д. И. Менделеева
§ 2.3. Ядерная модель строения атомов
§ 2.4. Состав атомных ядер. Ядерные реакции
§ 2.5. Современная модель состояния электрона в атоме
§ 2.6. Строение электронных оболочек атомов
§ 2.7. Электронные формулы Д. И. Менделеева
§ 2.9. Периодический закон и периодическая система элементов в свете учения о строении атомов
§ 2.10. Периодические свойства атомов
§ 2.11. Значение периодического закона и теории строения атомов
§ 2.12. Решение типовых задач
Глава 3. Химическая связь
§ 3.1. Ковалентная связь
§ 3,2. Свойства ковалентной связи
§ 3.3. Ионная связь
§ 3.4. Полярные и неполярные молекулы
§ 3.6. Водородная связь
§ 3.7. Типы кристаллических решеток
§ 3.8. Структурные формулы
§ 3.9. Степень окисления
§ 3.10. Химическая связь и валентность
§ 3.11. Решение типовых задач
Глава 4. Скорость химических реакций. Химическое равновесие
§ 4.1. Скорость химических реакций
§ 4.2. Факторы, влияющие на скорость реакции
§ 4.3. Энергия активации
§ 4.4. Понятие о катализе и катализаторах
§ 4.5. Необратимые и обратимые реакции
§ 4.6. Химическое равновесие
§ 4.7. Принцип Ле Шателье
§ 4.8. Решение типовых задач
Глава 5. Растворы. Теория электролитической диссоциации
§ 5.1. Численное выражение состава растворов
§ 5.2. Растворимость веществ в воде
§ 5.3. Тепловые явления при растворении
§ 5.4. Электролиты и неэлектролиты
§ 5.5. Теория электролитической диссоциации
§ 5.6. Механизм диссоциации
§ 5.7. Гидратация ионов
§ 5.8. Диссоциации кислот, оснований и солей в водных растворах
§ 5.9. Степень диссоциации
§5.10. Сильные и слабые электролиты
§5.11. Реакции ионного обмена
§ 5.12. Диссоциация воды. рН
§ 5.13. Протолитическая теория кислот и оснований
§ 5.14. Решение типовых задач
Глава 6. Важнейшие классы неорганических соединений
§ 6.1. Оксиды
§ 6.2. Кислоты
§ 6.3. Основания
§ 6.4. Соли
§ 6.5. Гидролиз солей
§ 6.6. Связь между классами неорганических соединений
§ 6.7. Решение типовых задач
Глава 7. Окислительно-восстановительные реакции. Электролиз
§ 7.1. Теория окислительно-восстановительных реакций
§ 7.2. Важнейшие восстановители и окислители
§ 7.4. Влияние среды на характер протекания реакций
§ 7.5. Классификация окислительно-восстановительных реакций
§ 7.6. Сущность электролиза
§ 7.7. Электролиз водных растворов электролитов
§ 7.8. Применение электролиза
§ 7.9. Решение типовых задач
ЧАСТЬ 2. НЕОРГАНИЧЕСКАЯ ХИМИЯ.
Глава 8. Водород. Галогены
§ 8.1. Общие свойства неметаллов
§ 8.2. Водород
§ 8.3. Вода
§ 8.4. Тяжелая вода
§ 8,5. Общая характеристика подгруппы галогенов
§ 8.6. Хлор
§ 8.7. Хлороводород и соляная кислота
§ 8.8. Соли соляной кислоты
§ 8.9. Краткие сведения о фторе, броме и иоде
Глава 9. Подгруппа кислорода
§ 9.1. Общая характеристика подгруппы кислорода
§ 9.2. Кислород и его свойства
§ 9.3. Сера и ее свойства
§ 9.4. Сероводород и сульфиды
§ 9.5. Оксид серы (IV). Сернистая кислота
§ 9.6. Оксид серы (VI). Серная кислота
§ 9.7. Свойства серной кислоты и ее практическое значение
§ 9.8. Соли серной кислоты
Глава 10. Подгруппа азота
§ 10.1. Общая характеристика подгруппы азота
§ 10.2. Азот. Сигма- и пи-связи
§ 10.3. Аммиак
§ 10,4. Химические основы производства аммиака
§ 10.5. Соли аммония
§ 10.7. Азотная киелота
§ 10.9. Соли азотной кислоты
§ 10.10. Фосфор
§ 10.11. Оксиды фосфора и фосфорные кислоты
§ 10.12. Минеральные удобрения
Глава 11. Подгруппа углерода
§ 11.1. Общая характеристика подгруппы углерода
§ 11.2. Углерод и его свойства
§ 11.3. Оксиды углерода. Угольная кислота
§ 11.4. Соли угольной кислоты
§ 11.5. Кремний и его свойства
§ 11.6. Оксид кремния (IV) и кремниевая кислота
§ 11.7. Понятие о коллоидных растворах
§ 11.8. Соли кремниевой кислоты
§ 11.9. Получение стекла и цемента
§ 11.10. Решение типовых задач
Глава 12. Общие свойства металлов
§ 12.1. Положение металлов в периодической системе элементов Д. И. Менделеева
§ 12.2. Физические свойства металлов
§ 12.3. Химические свойства металлов
§ 12.4. Металлы и сплавы в технике
§ 12.5. Ряд стандартных электродных потенцчалов
§ 12.6. Основные способы получения металлов
§ 12.7. Коррозия металлов
§ 12.8. Защита от коррозии
Глава 13. Металлы главных подгрупп
§ 13.1. Общая характеристика подгруппы лития
§ 13.2. Натрий и калий
§ 13.3. Едкие щелочи
§ 13.4. Соли натрия и калия
§ 13.5. Общая характеристика подгруппы бериллия
§ 13.6. Кальций
§ 13,7. Оксид и гидроксид кальция
§ 13.8. Соли кальция
§ 13.9. Жесткость воды и способы ее устранения
§ 13.10. Общая характеристика подгруппы бора
§ 13.11. Алюминий
§ 13.12. Оксид и гидроксид алюминия
§ 13.13. Применение алюминия и его сплавов
Глава 14. Металлы побочных подгрупп
§ 14.1. Общая характеристика подгруппы хрома
§ 14.2. Хром
§ 14.3. Оксиды и гидроксиды хрома
§ 14.4. Хроматы и дихроматы
§ 14.5. Общая характеристика семейства железа
§ 14.6. Железо
§ 14.7. Соединения железа
§ 14.8. Доменный процесс
§ 14.9. Чугун и стали
§ 14.10. Решение типовых задач
ЧАСТЬ 3. ОРГАНИЧЕСКАЯ ХИМИЯ.
Глава 15. Основные положения органической химии
§ 15.1. Предмет органической химии
§ 15.2. Особенности органических соединений
§ 15.3. Изомерия
§ 15.4. Теория химического строения органических соединений А. М. Бутлерова
§ 15.5. Гомологические ряды органических соединений
§ 15.6. Классификация органических соединений
§ 15.7. Типы органических реакций
Глава 16. Углеводороды
§ 16.1. Предельные углеводороды (алканы)
§ 16.2. Номенклатура алканов и их производных
§ 16.3. Химические свойства метана и его гомологов
§ 16.4. Циклоалканы
§ 16.5. Непредельные углеводороды
§ 16.6. Этилен и его гомологи
§ 16.7. Реакции полимеризации. Полиэтилен
§ 16.8. Ацетилен и его гомологи
§ 16.9. Диеновые углеводороды
§ 16.10. Природный и синтетический каучуки
§16.11. Ароматические углеводороды (арены
§ 16.12. Бензол и его гомологи
§ 16.13. Нефть и ее переработка
§ 16.14. Природные газы и их использование
§ 16.15. Решение типовых задач
Глава 17. Кислородсодержащие органические соединения
§ 17.1. Предельные спирты
§ 17.2. Метанол и этанол
§ 17.3. Этиленгликоль и глицерин
§ 17.4. Фенолы
§ 17.5. Альдегиды
§ 17.6. Формальдегид
§ 17.7. Ацетальдегид
§ 17.8. Реакции поликонденсации
§ 17.9. Кетоны
§ 17.10. Карбоновые кислоты
§ 17.11. Муравьиная кислота
§ 17.12. Уксусная кислота
§ 17.13. Сложные эфиры. Реакции этерификации и омыления
§ 17.14. Жиры
§ 17.15. Мыла и другие моющие средства
§ 17.16. Углеводы
§ 17.17. Моносахариды и дисахариды
§ 17.18. Полисахариды
§ 17.19. Непредельные, двухосновные и гетерофункциональные кислоты
§ 17.20. Решение типовых задач
Глава 18. Азотсодержащие органические соединения
§ 18.1. Нитросоединения
§ 18.2. Амины
§ 18.3. Анилин
§ 18.4. Аминокислоты
§ 18.5. Амиды кислот
§ 18.6. Белки
§ 18.7. Гетероциклические соединения
§ 18.8. Нуклеиновые кислоты
§ 18.9. Решение типовых задач
ПРИЛОЖЕНИЯ
Предметный указатель.

Открытие Д.И. Менделеевым периодического закона .
Открытие Д. И, Менделеевым периодического закона и построение периодической системы элементов явились результатом его длительной и напряженной научной работы. Периодический закон и периодическая система элементов - величайшее достижение химической науки» основа современной химии.

В качестве главной характеристики атома при построении периодической системы была принята его атомная масса. В своей книге «Основы химии» Д. И. Менделеев писал: «Масса вещества есть именно такое свойство его, от которого должны находиться в зависимости все остальные свойства... Поэтому ближе или естественнее всего искать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными их весами (массами) с другой».

Назначение: ДЛЯ ПОСТУПАЮЩИХ В ВУЗЫ

© Издательство "Высшая школа " Москва 1968

Формат: DjVu, Размер файла: 2.74 MB

Предисловие 3

Часть 1 Основные законы и понятии химии

Введение 5

§ 1. О предмете химии 7

§ 2. Значение химии. Роль химии п создании материально-технической базы коммунизма 8

Глава I. Основные представления атомно-молекулярной теории. Важнейшие законы химии 10

§ 1. Атомно-молекулярная теория 11

§ 2. Закон сохранения массы вещества. Расчеты по уравнению химической реакции 13

§ 3 Закон эквивалентов 15

§ 4 Закон Авогадро и его следствия 16

§ 5. Нахождение простейших формул химических соединений 19

Задачи и упражнения к главе 1 21

Глава II. Строение атома и основные представления о структуре вещества 21

§ 1. Строение атома 22

§ 2. Некоторые характеристики свободных атомов 24

§ 3. Электронная перестройка при образовании химической связи 26

§ 4. Простое и сложное вещество 27

§ 5. Основы стехиометрии 29

Задачи и упражнения к главе II 32

См. оглавление полностью...

Глава III Строение атома и периодический закон Д. И. Менделеева.

Периодическая система химических элементов 33

§ 1. Строение атома и периодическая система элементов

Д. И. Менделеева 33

§ 2. Периодический закон и периодическая система элементов 36

Задачи и упражнения к главе III 39

Глава IV. Простые вещества 39

§ 1. Металлы и неметаллы. Относительность деления простых веществ на металлы и неметаллы 40

§ 2. Аллотропия 42

§ 3. Понятие об окислительно-восстановительных процессах 43 Задачи и упражнения к главе IV 47

Глава V. Химические соединения 47

§ 1. Смесь и химическое соединение 47

§ 2 Простейшая и истинная формула химического соединения 48

§ 3. О постоянстве состава вещества 49

§ 4. Химические связи в соединениях 50

§ 5. Классификация неорганических соединений 52

§ 6. Графическое изображение формул химических соединений 55 Задачи и упражнения к главе V 57

Глава VI. Растворы. Теория электролитической диссоциации. Реакции

в растворах электролитов 58

§ 1. Растворы 58

§ 2. Способы выражения концентрации растворов 60

§ 3. Электролитическая диссоциация 65

§ 4. Реакции в растворах электролитов и ионные уравнения 68

§ 5. Окислительно-восстановительные реакции 71

Задачи и упражнения к главе VI 74

Глава VII. Химия и электрический ток 75

§ 1. Ряд напряжений (активности) металлов 75

§ 2. Электролиз 77

§ 3. Коррозия металлов 79

Задачи и упражнения к главе VII 83

Краткие сведения по неорганической и органической химии

Глава I. Свойства элементов первых трех периодов периодической системы и железа 84

§ 1. Свойства элементов главных подгрупп 1 и 2 групп периодической системы и алюминия 84

§ 2. Свойства железа 90

§ 3. Свойства элементов главных подгрупп 5, 6, 7 групп периодической системы 92

§ 4. Свойства неорганических соединений углерода и кремния 96 Задачи и упражнения к главе I части II 99

Глава II. Органическая химия 99

§ 1. Основные положения теории А. М. Бутлерова о строении органических соединений 99

§ 2. Классификация органических соединений 100

Углеводороды 105

§ 3. Предельные углеводороды (парафины) 105

§ 4. Алициклические предельные углеводороды 109

§ 5. Непредельные углеводороды 110

§ 6. Ароматические углеводороды 115

§ 7. Нефть и основные продукты ее переработки 118

Задачи и упражнения к §§ 1-7 главы II 120

Классы органических соединений 120

§ 8. Спирты 120

§ 9. Фенолы 123

§ 10. Альдегиды и кетоны 124

§ 11. Органические кислоты 128

§ 12. Жиры 130

§ 13. Углеводы 131

Задачи и упражнения к §§ 8-13 главы И 134

Скачать учебник СССР - Химия для поступающих в вузы 1968 года

См. Отрывок из учебника...

ПРЕДИСЛОВИЕ

Современная промышленность, строительство, транспорт, связь, энергетика, сельское хозяйство и медицина используют почти все химические элементы и их соединения.

Проблема создания химических материалов является самой важной в революционном преобразовании радиоэлектронной и ракетной техники, строительной техники, машиностроения и приборостроения, транспорта и техники связи.

Создание все более и более совершенной аппаратуры для искусственных спутников земли и космических кораблей ставит новые проблемы перед химией и химической промышленностью в создании полимерных и полупроводниковых материалов, не меняющих свойств в широком температурном интервале и устойчивых к радиации.

Новые достижения химии в получении сверхчистых монокристаллов привели к созданию транзисторной техники.

Новые достижения химии в производстве ферритов открыли пути развития кибернетической и радиолокационной техники.

В паши дни химическая технология, постепенно вытесняя из большинства отраслей промышленности механическую технологию, открывает большие перспективы в повышении производительности общественного труда.

Химия создает новые формы минеральных удобрений и новые средства селекции для получения высокоурожайных видов сельскохозяйственных растений.

Большой вклад внесла химия в познание процессов, протекающих в живой материи, и законов наследственности.

Химические вещества и их превращения подчиняются периодическому закону химических элементов Д. И. Менделеева и теории химического строения А. М. Бутлерова.

Важнейшие разделы химии - электролитическая диссоциация, окислительно-восстановительные реакции, электролиз, коррозия металлов - тесно увязаны авторами с теми сведениями, которые учащиеся получили в средней школе по физике.

В пособии кратко излагаются все вопросы программы по химии для поступающих в вузы и приведены решения задач по всем ее разделам. Настоящее пособие обобщает на новой основе материал по химии средней школы и является переходной ступенью к изучению курса химии в высшей школе.

Разделы «Основные законы и понятия химии» и «Неорганическая химия» написаны кандидатом химических наук А. Л. Мака-реня, раздел «Органическая химия» написан кандидатом химических наук П. М. Завидным.

В пособии учтен опыт преподавания химии на подготовительных курсах университета имени А. А. Жданова и Ленинградского электротехнического института связи имени профессора М. А. Бонч-Бруевича.

Редактор и авторы благодарны рецензентам проф. В. И. Семешину, кафедре методики преподавания химии ЛГПИ им. А. И. Герцена (зав. каф. проф. А. Д. Смирнов), а также проф. Я. М. Слободину, доц. Я. М. Веприку, В. Е. Майоровой, канд. хим. наук. В. И. Артемьеву, засл. учительнице школ РСФСР К. Г. Колосовой за ценные замечания по рукописи.

Замечания и советы, направленные на улучшение пособия просьба присылать в адрес издательства «Высшая школа».

Профессор В. В. Разумовский

ОСНОВНЫЕ ЗАКОНЫ и понятия ХИМИИ

ВВЕДЕНИЕ

Физика и химия являются основными науками о строении и свойствах материи. Еще несколько десятков лет назад великий русский ученый Д. И. Менделеев писал: «Недалеко то время, когда знание физики и химии будет таким же признаком и средством образования, как за сто, двести лет тому назад считалось знание классиков. Они (физика и химия - Авт.) составляют в наше время одно из средств успеха во всех отраслях знаний и их применений». На наших глазах оправдываются эти слова. Содружество двух наук привело к раскрытию строения атома, созданию атомной энергетики, полупроводниковой техники, к замечательным открытиям в области синтетических материалов (неорганических - искусственные алмазы, полупроводники и др.; органических - каучуки, пластмассы, волокна; элементоорганических - неорганические каучуки, силоксаны и т. п.).

Изучение химических явлений невозможно без основных представлений о строении вещества (атомно-молекулярное учение, учение о строении атомов и теория химической связи). Фундаментом при изучении свойств неорганических соединений служит периодический закон и периодическая система химических элементов Д. И. Менделеева, а при изучении свойств органических соединений - теория А. М. Бутлерова о строении органических соединений. Только глубокое осмысление этих основных теорий химии может привести к правильному пониманию многочисленных классов химических соединений, к твердому знанию их состава, строения и свойств.

При повторении химии особое внимание следует обратить не только на раскрытие взаимосвязи между элементами, но и на выявление зависимости их свойств от строения и состава. Понять причины протекания химических реакций невозможно без учета строения атомов, ионов, молекул, радикалов, без учета типов химической связи в исходных и конечных веществах. Важной стороной учения о химическом процессе являются понятия о равновесии и энергетике химической реакции. Изложению указанных вопросов отведено в пособии соответствующее место.

Подготовку к вступительным экзаменам по химии целесообразно начать со знакомства с «Программой вступительных экзаменов для поступающих в высшие учебные заведения СССР».

Программа состоит из двух разделов: «Общие указания» и «Объем требований». К сожалению, абитуриенты редко обращают внимание на раздел «Общие указания». Между тем его внимательное рассмотрение позволит правильно понять требования, предъявляемые к абитуриентам на вступительном экзамене. Например, в этом разделе указывается, что по химии экзаменующийся должен показать четкие знания основных химических законов, понятий и теорий. Что это значит?

При первоначальном изучении курса неорганической химии в средней школе рассматривается атомно-молекулярная теория, а затем - теория строения атома и некоторые представления о строении вещества. В свете теории строения атома ряд понятий атомно молекулярной теории подвергся уточнению. Эти уточнения должны быть учтены в ответе.

При повторении курса неорганической химии целесообразно обратить внимание на развитие основных понятий.

В «Общих указаниях» отмечается, что экзаменующийся должен показать знание терминологии предмета. К сожалению, многие абитуриенты плохо владеют терминологией. Очень часто это объясняется невнимательностью, а порою тем, что терминологии не придается должного значения, и вот что получается. Не все абитуриенты, например, четко знают названия (номенклатуру) химических соединений. На экзамене предлагают написать формулу сернистого калия, а отвечающие пишут формулу сернистокислого калия (K2S03) и даже сернокислого калия (K2S04).

Например в соединении HN03 валентность элементов HN03. В растворе это соединение диссоциирует на ионы Н1 и N03. Ни о каких ионах N5+ речи быть не может. Между тем, абитуриенты нередко говорят, что окислителем в этом соединении может выступать ион N5+.

Экзаменующийся должен показать знание общей характеристики важнейших элементов и их основных соединений, т. е. четко описать положение элемента в системе и на основе закономерностей, которые изучены в средней школе, показать знание свойств важнейших соединений этого элемента.

Рассказ о свойствах соединений, образуемых каким-либо элементом, целесообразно строить в определенной логической последовательности: положение элемента в системе, его электронная конфигурация, свойства простого вещества (тип связи), свойства его соединений (тип связи).

Одним из требований «Общих указаний» к абитуриентам является умение пользоваться периодической системой Д. И. Менделеева в пределах объема программы. Речь идет в данном случае не только о необходимости подробно знать строение и свойства томов элементов первых трех периодов системы, но и об умении применить знание общих закономерностей к описанию свойств тех элементов, изучение которых не было предусмотрено программой по химии средней школы. Например, нужно уметь описать свойства мышьяка или олова, написать несколько характерных соединений хрома или какого-либо другого элемента дополнительной подгруппы. Разумеется, это можно сделать, исходя из знания свойств известных элементов.

Экзаменующийся должен показать понимание важнейших химических производственных процессов. От него не требуется знании деталей аппаратуры, лабораторных приемов, особенностей течения реакций и т. п. Надо знать химическую сторону производственных процессов, а также основные принципы, на которых строится осуществление и экономическая эффективность важнейших процессов.

Во втором разделе «Общих указаний» сказано, что от экзаменующихся требуется знание тех свойств важнейших веществ, на которых основано их применение в народном хозяйстве. Абитуриенты должны обратить внимание на такие разделы учебника по неорганической химии, как применение серной кислоты, применение соляной кислоты в народном хозяйстве и т. п.

И, наконец, в «Общих указаниях» подчеркивается, что экзаменующийся должен показать умение решать качественные задачи применительно к материалу, указанному в программе.

В настоящем пособии будут рассмотрены наиболее типичные задачи.

§ 1. О ПРЕДМЕТЕ ХИМИИ

В литературе по химии можно встретить следующие определения предмета химии:

«Химия - наука о химических элементах» (Д. И. Менделеев).

«Химия - наука о веществах, их превращениях и явлениях, сопровождающих эти превращения» (наиболее распространенное определение химии).

«Химия XX века - это наука о синтезе материалов с определенными свойствами» (определение химии, которое приводится в последнее время).

Нельзя сказать, что одно определение лучше, другое хуже, одно правильно, другое нет. Каждое из приведенных определений правильно, хотя и подчеркивает какую-то одну преимущественную сторону химической науки.

Обратите внимание на второе определение и на последовательность в перечислении объектов изучения.

Вещества. Их превращения. Явления, сопровождающие эти превращения.

Само вещество и его превращения изучает не только химия, но и другие науки, например, смежные с химией физика и биология. Значит, каждая из этих наук изучает не все и не всякие превращения вещества. Химию интересуют только те превращения, при которых происходит изменение состава вещества, приводящее к качественному изменению свойств веществ. Плавление льда или кипение воды изучает физика, а взаимодействие воды с натрием или серной кислотой изучает химия, потому что в первом случае меняется только агрегатное состояние вещества,но не состава, а во втором - исходные и конечные вещества отличаются составом и свойствами, не только физическими, но и химическими.

Ясно, что совершающиеся в химических процессах изменения находятся в прямой зависимости оттого, из каких элементов состоят взаимодействующие вещества.

Степень развития любой науки определяется тем, что дает она для практики, находят ли реализацию сделанные в ней открытия. XVIII век называют веком пара, XIX - веком электричества; по аналогии XX век назвали веком атомной энергии, синтетических (искусственных) материалов и раскрытия тайн жизни. Человечество издавна стремилось к овладению энергетическими ресурсами, и наиболее ощутимые успехи в этой области были сделаны физикой. Проблема создания материалов широкого ассортимента с заданными свойствами встает только в последние десятилетия.

Синтез новых материалов был бы невозможен без выявления специфических особенностей химии каждого элемента.

Развитие ракетной, ядерной, полупроводниковой техники было бы невозможно без создания новых материалов.

Третье из приведенных выше определение предмета химии подчеркивает именно эту сторону ее развития, наметившуюся в последние десятилетия.

§ 2. Значение химии, роль химии в создании материально-технической базы коммунизма

Значение химии. По мере развития человеческого общества проявляется все возрастающая роль химии в овладении энергетическими и материальными ресурсами природы. Так, наряду с механической обработкой дерева и камня получила распространение их химическая обработка; выплавка металлов из руд, химический синтез и т. п.

От примитивного использования топлива для получения тепла человечество перешло к более широкому использованию древесины, угля и нефти, на основе которых получены не только новые виды топлива (например, газообразное), но и целый ряд других важнейших продуктов. В свою очередь, энергию химического пронесен научились превращать в электрическую (гальванические алименты, аккумуляторы, топливные элементы). Наконец в настоящее время осуществляется широкое производство материалов с определенными, заранее заданными свойствами. Начинается активное вмешательство химии в деятельность живого организма.

Широкое промышленное использование достижений химии ока-шлось возможным лишь на определенной ступени развития человеческого общества, на определенной ступени развития производимых сил общества. Для осуществления химического синтеза, химической переработки материалов необходимы соответствующие установки и аппараты, приборы для контроля, автоматизация производства, достаточные энергетические мощности, предварительная подготовка сырья.

Роль химии в создании материально-технической базы коммунизма. В Программе Коммунистической партии Советского Союза, принятой на XXII съезде КПСС, говорится, что главная экономическая задача партии и советского народа состоит в том, чтобы в течение двух десятилетий создать материально-техническую базу коммунизма. Для создания такой базы необходимо также широкое применение химии в народном хозяйстве.

Академик А. Е. Ферсман писал в одной из своих работ: «....идея химизации в сочетании с идеей электрификации - идея исключительной важности, ибо она переводит на более высокую ступень использование природных богатств...».

Химизация народного хозяйства означает: 1) создание постоянной материальной базы для осуществления и совершенствования технологических процессов; 2) внедрение во все отрасли промышленности и быт химических методов переработки веществ, приводящих к коренному изменению технологии и экономики производства, бытовых и культурных условий жизни и труда населения; 3) увеличение количества и качества промышленной и сельскохозяйственной продукции.

В результате развития химической промышленности в нашей стране в 1940 г. объем химической продукции возрос в 18 раз по сравнению с 1913 г., а в 1951 г. наша страна вышла на второе место в мире (после США) по общему объему производства химических продуктов, а по некоторым показателям (кокс, стекло, цемент) мы находимся на первом месте. За годы советскими учеными были разработаны многие важные научные и технологические проблемы. Достаточно сказать, например, что в СССР впервые в мире был получен синтетический каучук и разработана технология его промышленного производства, получены искусственные алмазы, созданы новые материалы для космической и ядерной техники.

Работы А. Е. Фаворского и его школы по синтезу диеновых углеводородов и на их базе новых полимеров, А. Н. Несмеянова и его школы - в области элементоорганических соединений, К. А. Андрианова - по синтезу кремнийорганических соединений, Г. А. Разуваева - по химии свободных радикалов, Н. Н. Семенова и его школы в области химической кинетики, Г. Н. Флерова с сотрудниками по получению трансурановых элементов (№ 102, № 104) сыграли огромную роль в развитии отечественной и мировой химической науки, в выполнении задач коммунистического строительства в нашей стране.

В директивах XXIII съезда КПСС предусматривается дальнейший рост темпов развития химической и нефтехимической промышленности. Так, намечается к 1970 г. рост производства минеральных удобрений, химических волокон и газа почти в 2 раза, а пластических масс и смол - почти в 3 раза.

Современное развитие науки ставит на очередь решение ряда комплексных задач и проблем, таких, как проблемы онкологии, вирусологии, генетики, с одной стороны (связь с биологией), и. с другой стороны, химия плазмы, химия элементарных частиц, космохимия (связь с физикой).

  • Химия Для старших классов и поступающих в ВУЗы 1960 год
  • Задачи химических олимпиад (Сорокин, Загорский, Свитанько) 1989 год

Хомченко Г. П. Пособие по химии для поступающих в вузы.- 4-е изд., испр. и доп,- М., 2002,- 480 с.: ил.
В пособии освещены все вопросы приемных экзамене по химии. Для лучшего усвоения курса химии приведены некоторые дополнительные сведения. После каждой главы даются типовые задачи с решениями и задачи для самостоятельной работы.
Книга предназначена поступающим в вузы. Оиа также может быть рекомендована преподавателям химии при подготовке учащихся к сдаче выпускных экзаменов за курс средней школы.
Содержание
Предисловие
Введение
§ 1. Предмет химии
§ 2. Роль химии в промышленности и сельском хозяйстве.
§ 3. Химия и экология
ЧАСТЬ 1. ОБЩАЯ ХИМИЯ.
Глава 1. Основные понятия и законы химии
§ 1.1. Атомно-молекулярное учение в химии
§ 1.2. Химические элементы
§ 1.3. Простые и сложные вещества. Аллотропия
§ 1.4. Относительная атомная масса
§ 1.5. Относительная молекулярная масса
§ 1.6. Моль. Молярная масса
§ 1.7. Химические знаки, формулы и уравнения
§ 1.8. Химические реакции. Классификация реакций
§ 1.9. Закон сохранения массы веществ
§ 1.10. Закон постоянства состава вещества
§1.11. Газовые законы. Закон Авогадро. Молярный объем газа
§ 1.12. Решение типовых задач
Глава 2. Периодический закон Д. И. Менделеева и строение атомов
§ 2.1. Открытие Д. И. Менделеевым периодического закона
§ 2.2. Периодическая система элементов Д. И. Менделеева
§ 2.3. Ядерная модель строения атомов
§ 2.4. Состав атомных ядер. Ядерные реакции
§ 2.5. Современная модель состояния электрона в атоме
§ 2.6. Строение электронных оболочек атомов
§ 2.7. Электронные формулы Д. И. Менделеева
§ 2.9. Периодический закон и периодическая система элементов в свете учения о строении атомов
§2.10. Периодические свойства атомов
§ 2.11. Значение периодического закона и теории строения атомов
§2.12. Решение типовых задач
Глава 3. Химическая связь
§ 3.1. Ковалентная связь
§ 3,2. Свойства ковалентной связи
§ 3.3. Ионная связь
§ 3.4. Полярные и неполярные молекулы
§ 3.6. Водородная связь
§ 3.7. Типы кристаллических решеток
§ 3.8. Структурные формулы
§ 3.9. Степень окисления
§3.10. Химическая связь и валентность
§3.11. Решение типовых задач
Глава 4. Скорость химических реакций. Химическое равновесие
§4.1. Скорость химических реакций
§4.2. Факторы, влияющие на скорость реакции
§ 4.3. Энергия активации
§ 4.4. Понятие о катализе и катализаторах
§ 4.5. Необратимые и обратимые реакции
§4.6. Химическое равновесие
§ 4.7. Принцип Ле Шателье
§ 4.8. Решение типовых задач
Глава 5. Растворы. Теория электролитической диссоциации
§ 5.1. Численное выражение состава растворов
§ 5.2. Растворимость веществ в воде
§ 5.3. Тепловые явления при растворении
§ 5.4. Электролиты и неэлектролиты
§ 5.5. Теория электролитической диссоциации
§ 5.6. Механизм диссоциации
§ 5.7. Гидратация ионов
§ 5.8. Диссоциации кислот, оснований и солей в водных растворах
§ 5.9. Степень диссоциации
§5.10. Сильные и слабые электролиты
§5.11. Реакции ионного обмена
§5.12. Диссоциация воды. рН
§5.13. Протолитическая теория кислот и оснований
§5.14. Решение типовых задач
Глава 6. Важнейшие классы неорганических соединений
§6.1. Оксиды
§6.2. Кислоты
§6.3. Основания
§6.4. Соли
§ 6.5. Гидролиз солей
§ 6.6. Связь между классами неорганических соединений
§ 6.7. Решение типовых задач
Глава 7. Окислительно-восстановительные реакции. Электролиз
§7.1. Теория окислительно-восстановительных реакций
§ 7.2. Важнейшие восстановители и окислители
.§7.4. Влияние среды на характер протекания реакций
§ 7.5. Классификация окислительно-восстановительных реакций
§ 7.6. Сущность электролиза
§ 7.7. Электролиз водных растворов электролитов
§ 7.8. Применение электролиза
§ 7.9. Решение типовых задач
ЧАСТЬ 2. НЕОРГАНИЧЕСКАЯ ХИМИЯ.
Глава 8. Водород. Галогены
§8.1. Общие свойства неметаллов
§8.2. Водород
§ 8.3. Вода
§8,4, Тяжелая вода
§ 8,5. Общая характеристика подгруппы галогенов
§8.6. Хлор
§ 8.7. Хлороводород и соляная кислота
§ 8.8. Соли соляной кислоты
§ 8.9. Краткие сведения о фторе, броме и иоде
Глава 9. Подгруппа кислорода
§9.1. Общая характеристика подгруппы кислорода
§ 9.2. Кислород и его свойства
§ 9.3. Сера и ее свойства
§ 9.4. Сероводород и сульфиды
§ 9.5. Оксид серы (IV). Сернистая кислота
§9.6. Оксид серы (VI). Серная кислота
§ 9.7. Свойства серной кислоты и ее практическое значение
§ 9.8. Соли серной кислоты
Глава 10. Подгруппа азота
§ 10.1. Общая характеристика подгруппы азота
§ 10.2. Азот. Сигма- и пи-связи
§ 10.3. Аммиак

§ 10,4. Химические основы производства аммиака
§ 10.5. Соли аммония
§ 10.7. Азотная киелота
§ 10.9. Соли азотной кислоты
§ 10.10. Фосфор
§ 10.11. Оксиды фосфора и фосфорные кислоты
§ 10.12. Минеральные удобрения
Глава 11. Подгруппа углерода
§ 11.1. Общая характеристика подгруппы углерода
§ 11.2. Углерод и его свойства
§ 11.3. Оксиды углерода. Угольная кислота
§ 11.4. Соли угольной кислоты
§ 11.5. Кремний и его свойства
§ 11.6. Оксид кремния (IV) и кремниевая кислота
§ 11.7. Понятие о коллоидных растворах
§ 11.8. Соли кремниевой кислоты
§ 11.9. Получение стекла и цемента
§ 11.10. Решение типовых задач
Глава 12, Общие свойства металлов
§ 12.1. Положение металлов в периодической системе элементов Д. И. Менделеева
§ 12.2. Физические свойства металлов
§ 12.3. Химические свойства металлов
§ 12.4. Металлы и сплавы в технике
§ 12.5. Ряд стандартных электродных потенцчалов
§ 12.6. Основные способы получения металлов
§ 12.7. Коррозия металлов
§ 12.8. Защита от коррозии
Глава 13. Металлы главных подгрупп
§ 13.1. Общая характеристика подгруппы лития
§ 13.2. Натрий и калий
§ 13.3. Едкие щелочи
§ 13.4. Соли натрия и калия
§ 13.5. Общая характеристика подгруппы бериллия
§ 13.6. Кальций
§ 13,7. Оксид и гидроксид кальция
§ 13.8. Соли кальция
§ 13.9. Жесткость воды и способы ее устранения
§ 13.10. Общая характеристика подгруппы бора
§ 13.11. Алюминий
§ 13.12. Оксид и гидроксид алюминия
§ 13.13. Применение алюминия и его сплавов
Глава 14. Металлы побочных подгрупп
§ 14.1. Общая характеристика подгруппы хрома
§ 14.2. Хром
§ 14.3. Оксиды и гидроксиды хрома
§ 14.4. Хроматы и дихроматы
§ 14.5. Общая характеристика семейства железа
§ 14.6. Железо
§ 14.7. Соединения железа
§ 14.8. Доменный процесс
§ 14.9. Чугун и стали
§ 14.10. Решение типовых задач
ЧАСТЬ 3. ОРГАНИЧЕСКАЯ ХИМИЯ.
Глава 15. Основные положения органической химии
§ 15.1. Предмет органической химии
§ 15.2. Особенности органических соединений
§ 15.3. Изомерия
§ 15.4. Теория химического строения органических соединений А. М. Бутлерова
§ 15.5. Гомологические ряды органических соединений
§ 15.6. Классификация органических соединений
§ 15.7. Типы органических реакций
Глава 16. Углеводороды
§ 16.1. Предельные углеводороды (алканы)
§ 16.2. Номенклатура алканов и их производных
§ 16.3. Химические свойства метана и его гомологов
§ 16.4. Циклоалканы
§ 16.5. Непредельные углеводороды
§ 16.6. Этилен и его гомологи
§ 16.7. Реакции полимеризации. Полиэтилен
§ 16.8. Ацетилен и его гомологи
§ 16.9. Диеновые углеводороды
§ 16.10. Природный и синтетический каучуки
§16.11. Ароматические углеводороды (арены
§ 16.12. Бензол и его гомологи
§ 16.13. Нефть и ее переработка
§ 16.14. Природные газы и их использование
§ 16.15. Решение типовых задач
Глава 17. Кислородсодержащие органические соединения
§ 17.1. Предельные спирты
§ 17.2. Метанол и этанол
§ 17.3. Этиленгликоль и глицерин
§ 17.4. Фенолы
§ 17.5. Альдегиды
§ 17.6. Формальдегид
§ 17.7. Ацетальдегид
§ 17.8. Реакции поликонденсации
§ 17.9. Кетоны
§ 17.10. Карбоновые кислоты
§ 17.11. Муравьиная кислота
§ 17.12. Уксусная кислота
§ 17.13. Сложные эфиры. Реакции этерификации и омыления
§ 17.14. Жиры
§ 17.15. Мыла и другие моющие средства
§ 17.16. Углеводы
§ 17.17. Моносахариды и дисахариды
§ 17.18. Полисахариды
§ 17.19. Непредельные, двухосновные и гетерофункциональные кислоты
§ 17.20. Решение типовых задач
Глава 18. Азотсодержащие органические соединения
§ 18.1. Нитросоединения
§ 18.2. Амины
§ 18.3. Анилин
§ 18.4. Аминокислоты
§ 18.5. Амиды кислот
§ 18.6. Белки
§ 18.7. Гетероциклические соединения
§ 18.8. Нуклеиновые кислоты
§ 18.9. Решение типовых задач
ПРИЛОЖЕНИЯ
Предметный указатель

На экзамене по химии поступающий в университет должен:

показать знание основных теоретических положений химии;

уметь применять теоретические положения химии при рассмотрении основных классов неорганических и органических веществ;

уметь раскрывать зависимость свойств веществ от их состава и строения;

знать свойства важнейших веществ, применяемых в промышленности и в быту;

понимать основные научные принципы важнейших химических производств (не углубляясь в детали устройства химической аппаратуры);

решать типовые и комбинированные задачи по основным разделам химии.

На экзамене можно пользоваться следующими таблицами: «Периодическая система химических элементов Д. И. Менделеева», «Растворимость оснований, кислот и солей в воде», «Электрохимический ряд стандартных электродных потенциалов». При решении задач разрешается пользоваться калькулятором.

В экзаменационные билеты для устного экзамена включаются четыре вопроса: первый - по теоретическим основам химии, второй - по неорганической химии, третий - по органической химии, четвертый - задача. Возможно включение в билеты трех вопросов.

Билеты письменного экзамена могут содержать до 10 заданий с дифференцированной оценкой, охватывающих все разделы программы для поступающих.

Теоретические основы химии

1. Предмет и задачи химии. Явления физические и химические. Место химии среди естественных наук. Химия и экология.

2. Основы атомно-молекулярной теории. Понятие атома, элемента, вещества. Относительная атомная и относительная молекулярная массы. Моль - единица количества вещества. Молярная масса. Законы стехиометрии: закон сохранения массы вещества, закон постоянства состава. Относительная плотность газа.

3. Химические элементы. Знаки химических элементов и химические формулы. Простое вещество, сложное вещество. Аллотропия.

4. Строение атома. Атомное ядро. Изотопы. Стабильные и нестабильные ядра. Радиоактивные превращения, деление ядер и ядерный синтез. Уравнение радиоактивного распада. Период полураспада.

5. Двойственная природа электрона. Строение электронных оболочек атомов. Квантовые числа. Атомные орбитали. Электронные конфигурации атомов в основном и возбужденном состояниях.

6. Открытие Д. И. Менделеевым периодического закона и создание периодической системы химических элементов. Современная формулировка периодического закона. Строение периодической системы: большие и малые периоды, группы и подгруппы. Зависимость свойств элементов и образуемых ими соединений от положения элемента в периодической системе.

7. Виды химической связи: ковалентная (полярная и неполярная), ионная, металлическая, водородная. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Энергия связи. Электроотрицательность. Полярность связи, индуктивный эффект. Кратные связи. Модель гибридизации орбиталей. Связь электронной структуры молекул с их геометрическим строением (на примере соединений элементов 2-го периода). Делокализация электронов в сопряженных системах, мезомерный эффект.

8. Валентность и степень окисления. Структурные формулы. Изомерия. Виды изомерии, структурная и пространственная изомерия.

9. Агрегатные состояния веществ и переходы между ними в зависимости от температуры и давления. Газы. Газовые законы. Уравнение Менделеева-Клапейрона.

Закон Авогадро, молярный объем. Жидкости. Ассоциация молекул в жидкостях. Твердые тела. Основные типы кристаллических решеток: кубические и гексагональные.

10. Классификация химических реакций: реакции соединения, разложения, замещения, обмена. Окислительно-восстановительные реакции. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов.

11. Тепловые эффекты химических реакций. Термохимические уравнения. Теплота (энтальпия) образования химических соединений. Закон Гесса и следствия из него.

12. Скорость химических реакций. Зависимость скорости реакции от природы и концентрации реагирующих веществ, температуры. Константа скорости химической реакции. Энергия активации. Катализ и катализаторы.

13. Обратимость химических реакций. Химическое равновесие и условия его смещения, принцип Ле Шателье. Константа равновесия, степень превращения.

14. Растворы. Растворимость веществ и ее зависимость от температуры, давления, природы растворителя. Способы выражения концентрации растворов: массовая доля, мольная доля, молярная концентрация. Твердые растворы. Сплавы.

15. Сильные и слабые электролиты. Электролитическая диссоциация. Константа диссоциации. Степень диссоциации. Ионные уравнения реакций. Свойства кислот, оснований и солей в свете теории электролитической диссоциации Аррениуса. Гидролиз солей. Электролиз водных растворов и расплавов солей. Процессы, протекающие у катода и анода.

Неорганическая химия

На основании периодического закона абитуриенты должны уметь давать сравнительную характеристику элементов в группах и периодах.

Характеристика элемента включает: электронную конфигурацию атома; возможные валентности и степени окисления элемента в соединениях; формы простых веществ и основные типы соединений, их физические и химические свойства, лабораторные и промышленные способы получения; распространенность элемента и его соединений в природе, практическое значение и области применения его соединений. При описании химических свойств должны быть отражены реакции с участием неорганических и органических соединений (кислотно-основные и окислительно-восстановительные превращения), а также качественные реакции.

1. Основные классы неорганических веществ, их названия (номенклатура), связь между ними.

2. Оксиды и пероксиды. Типы оксидов. Способы получения, свойства оксидов и пероксидов.

3. Основания, способы получения, свойства.

4. Кислоты, их классификация, общие свойства, способы получения.

5. Соли, их состав, химические свойства, способы получения.

6. Металлы, их положение в периодической системе. Физические и химические свойства. Основные способы получения. Металлы и сплавы в технике.

7. Общая характеристика щелочных металлов. Оксиды, пероксиды, гидроксиды и соли щелочных металлов. Калийные удобрения.

8. Общая характеристика элементов главной подгруппы II группы периодической системы. Кальций и его соединения. Жесткость воды и способы ее устранения.

9. Общая характеристика элементов главной подгруппы III группы периодической системы. Алюминий. Амфотерность оксида и гидроксида алюминия.

10. Железо, его оксиды и гидроксиды, зависимость их свойств от степени окисления железа. Химические реакции, лежащие в основе получения чугуна и стали. Роль железа и его сплавов в технике.

11. Водород, его взаимодействие с металлами, неметаллами, оксидами, органическими соединениями.

12. Кислород, его аллотропные формы. Свойства озона. Оксиды и пероксиды.

13. Вода, строение воды. Физические и химические свойства воды. Кристаллогидраты. Пероксид водорода.

14. Общая характеристика галогенов. Галогеноводороды. Галогениды. Кислородсодержащие соединения хлора.

15. Общая характеристика элементов главной подгруппы VI группы периодической системы. Сера. Сероводород, сульфиды. Оксиды серы (IV) и (VI), получение, свойства. Сернистая и серная кислоты, их свойства. Соли сернистой и серной кислот. Производство серной кислоты.

16. Общая характеристика элементов главной подгруппы V группы периодической системы. Азот. Аммиак, его промышленный синтез. Соли аммония. Нитриды. Оксиды азота. Азотистая и азотная кислоты и их соли. Азотные удобрения.

17. Фосфор, его аллотропные формы. Фосфин, фосфиды. Оксид фосфора (V). Орто-, мета- и дифосфорная кислоты. Ортофосфаты. Фосфорные удобрения.

18. Общая характеристика элементов главной подгруппы IV группы периодической системы. Углерод, его аллотропные формы. Оксиды углерода (II) и (IV). Угольная кислота и ее соли. Карбиды кальция и алюминия.

19. Кремний. Силан. Силицид магния. Оксид кремния (IV). Кремниевая кислота и ее сояи.

Органическая химия

Характеристика каждого класса органических соединений включает: особенности электронного и пространственного строения соединений данного класса, закономерности изменения физических и химических свойств в гомологическом ряду, номенклатуру, виды изомерии, основные типы химических реакций и их механизмы.

Характеристика конкретных соединений включает физические и химические свойства, лабораторные и промышленные способы получения, области применения. При описании химических свойств необходимо учитывать реакции с участием как радикала, так и функциональной группы.

1. Теория строения органических соединений А. М. Бутлерова. Зависимость свойств веществ от их строения. Виды изомерии. Природа химической связи в молекулах органических соединений, гомо- и гетеролитические способы разрыва связей. Понятие о свободных радикалах.

2. Предельные углеводороды (алканы и циклоалканы), их электронное и пространственное строение (-гибри-дизация). Номенклатура, изомерия.

3. Алкены, их электронное и пространственное строение (-гибридизация, и -связи). Номенклатура, изомерия. Правило Марковникова. Циклоалкены. Сопряженные диеновые углеводороды, особенности их химических свойств.

4. Ацетиленовые углеводороды (алкины), их электронное и пространственное строение (-гибридизация, и -связи). Номенклатура. Кислотные свойства алкинов. Реакция Кучерова.

5. Ароматические углеводороды (арены). Бензол, электронное и пространственное строение (-гибридизация). Гомологи бензола. Понятие о взаимном влиянии атомов на примере толуола (реакции ароматической системы и углеводородного радикала).

6. Природные источники углеводородов: нефть, природный и попутный нефтяной газы, уголь. Перегонка нефти. Крекинг. Продукты, получаемые из нефти, их применение.

7. Спирты. Первичные, вторичные и третичные спирты. Номенклатура, строение, химические свойства одноатомных спиртов. Промышленный синтез этанола. Многоатомные спирты (этиленгликоль, глицерин), особенности химических свойств.

8. Фенол, его строение, взаимное влияние атомов в молекуле. Химические свойства фенола, сравнение со свойствами алифатических спиртов.

9. Альдегиды. Номенклатура, строение, физические и химические свойства. Особенности карбонильной группы. Муравьиный и уксусный альдегиды, получение, применение. Понятие о кетонах.

10. Карбоновые кислоты. Номенклатура, строение, физические и химические свойства.

Взаимное влияние карбоксильной группы и углеводородного радикала. Предельные, непредельные и ароматические кислоты. Примеры кислот: муравьиная кислота (ее особенности), уксусная, бензойная, стеариновая, олеиновая кислоты.

11. Сложные эфиры. Строение, химические свойства. Реакция этерификации. Жиры, их роль в природе, химическая переработка жиров (гидролиз, гидрирование).

12. Углеводы. Моносахариды: рибоза, дезоксирибоза, глюкоза, фруктоза, их строение, физические и химические свойства, роль в природе. Циклические формы моносахаридов. Полисахариды: крахмал и целлюлоза.

13. Амины. Алифатические и ароматические амины. Взаимное влияние атомов на примере анилина. Первичные, вторичные и третичные амины.

14. Аминокислоты и оксикислоты. Строение, химические свойства, изомерия. Примеры оксикислот: молочная, винная и салициловая кислоты. Альфа-аминокислоты - структурные единицы белков. Пептиды. Строение и биологическая роль белков.

15. Пиррол. Пиридин. Пиримидиновые и пуриновые основания, входящие в состав нуклеиновых кислот. Представление о структуре нуклеиновых кислот.

16. Реакции полимеризации и поликонденсации. Общие понятия химии высокомолекулярных соединений (ВМС): мономер, полимер, элементарное звено, степень полимеризации (поликонденсации). Примеры различных типов ВМС: полиэтилен, полипропилен, полистирол, поливинилхлорид, политетрафторэтилен, каучуки, фенол-формальдегидные смолы, полипептиды, искусственные и синтетические волокна.



ПРЕДИСЛОВИЕ
Современная промышленность, строительство, транспорт, связь, энергетика, сельское хозяйство и медицина используют почти все химические элементы и их соединения.
Проблема создания химических материалов является самой важной в революционном преобразовании радиоэлектронной и ракетной техники, строительной техники, машиностроения и приборостроения, транспорта и техники связи.
Создание все более и более совершенной аппаратуры для искусственных спутников земли и космических кораблей ставит новые проблемы перед химией и химической промышленностью в создании полимерных и полупроводниковых материалов, не меняющих свойств в широком температурном интервале и устойчивых к радиации.
Новые достижения химии в получении сверхчистых монокристаллов привели к созданию транзисторной техники.
Новые достижения химии в производстве ферритов открыли пути развития кибернетической и радиолокационной техники.
В паши дни химическая технология, постепенно вытесняя из большинства отраслей промышленности механическую технологию, открывает большие перспективы в повышении производительности общественного труда.
Химия создает новые формы минеральных удобрений и новые средства селекции для получения высокоурожайных видов сельскохозяйственных растеий.
Большой вклад внесла химия в познание процессов, протекающих в живой материи, и законов наследственности.
Химические вещества и их превращения подчиняются периодическому закону химических элементов Д. И. Менделеева и теории химического строения А. М. Бутлерова.
Важнейшие разделы химии - электролитическая диссоциация, окислительно-восстановительные реакции, электролиз, коррозия металлов - тесно увязаны авторами с теми сведениями, которые учащиеся получили в средней школе по физике.
В пособии кратко излагаются все вопросы программы по химии для поступающих в вузы и приведены решения задач по всем ее разделам. Настоящее пособие обобщает на новой основе материал по химии средней школы и является переходной ступенью к изучению курса химии в высшей школе.
Разделы «Основные законы и понятия химии» и «Неорганическая химия» написаны кандидатом химических наук А. Л. Мака-реня, раздел «Органическая химия» написан кандидатом химических наук П. М. Завлиным.
В пособии учтен опыт преподавания химии на подготовительных курсах Ленинградского университета имени А. А. Жданова и Ленинградского электротехнического института связи имени профессора М. А. Бонч-Бруевича.
Редактор и авторы благодарны рецензентам проф. В. И. Семишину, кафедре методики преподавания химии ЛГПИ им. А. И. Герцена (зав. каф. проф. А. Д. Смирнов), а также проф. Я. М. Слободину, доц. Я. М. Веприку, В. Е. Майоровой, канд. хим. наук. В. И. Артемьеву, засл. учительнице школ РСФСР К. Г. Колосовой за ценные замечания по рукописи.
Замечания и советы, направленные на улучшение пособия просьба присылать в адрес издательства «Высшая школа».
Профессор В. В. Разумовский

ЧАСТЬ I
ОСНОВНЫЕ ЗАКОНЫ и понятия ХИМИИ

ВВЕДЕНИЕ
Физика и химия являются основными науками о строении и свойствах материи. Еще несколько десятков лет назад великий русский ученый Д. И. Менделеев писал: «Недалеко то время, когда знание физики и химии будет таким же признаком и средством образования, как за сто, двести лет тому назад считалось знание классиков. Они (физика и химия - Авт.) составляют в наше время одно из средств успеха во всех отраслях знаний и их применений». На наших глазах оправдываются эти слова. Содружество двух наук привело к раскрытию строения атома, созданию атомной энергетики, полупроводниковой техники, к замечательным открытиям в области синтетических материалов (неорганических - искусственные алмазы, полупроводники и др.; органических - каучуки, пластмассы, волокна; элементоорганических - неорганические каучуки, силоксаны и т. п.).
Изучение химических явлений невозможно без основных представлений о строении вещества (атомно-молекулярное учение, учение о строении атомов и теория химической связи). Фундаментом при изучении свойств неорганических соединений служит периодический закон и периодическая система химических элементов Д. И. Менделеева, а при изучении свойств органических соединений - теория А. М. Бутлерова о строении органических соединений. Только глубокое осмысление этих основных теорий химии может привести к правильному пониманию многочисленных классов химических соединений, к твердому знанию их состава, строения и свойств.
При повторении химии особое внимание следует обратить не только на раскрытие взаимосвязи между элементами, но и на выявление зависимости их свойств от строения и состава. Понять причины протекания химических реакций невозможно без учета строения атомов, ионов, молекул, радикалов, без учета типов химической связи в исходных и конечных веществах. Важной стороной учения о химическом процессе являются понятия о равновесии и энергетике химической реакции. Изложению указанных вопросов отведено в пособии соответствующее место.
Подготовку к вступительным экзаменам по химии целесообразно начать со знакомства с «Программой вступительных экзаменов для поступающих в высшие учебные заведения СССР».
Программа состоит из двух разделов: «Общие указания» и «Объем требований». К сожалению, абитуриенты редко обращают внимание на раздел «Общие указания». Между тем его внимательное рассмотрение позволит правильно понять требования, предъявляемые к абитуриентам на вступительном экзамене. Например, в этом разделе указывается, что по химии экзаменующийся должен показать четкие знания основных химических законов, понятий и теорий. Что это значит?
При первоначальном изучении курса неорганической химии в средней школе рассматривается атомно-молекулярная теория, а затем - теория строения атома и некоторые представления о строении вещества. В свете теории строения атома ряд понятий атомномолекулярной теории подвергся уточнению. Эти уточнения должны быть учтены в ответе.
При повторении курса неорганической химии целесообразно обратить внимание на развитие основных понятий.
В «Общих указаниях» отмечается, что экзаменующийся должен показать знание терминологии предмета. К сожалению, многие абитуриенты плохо владеют терминологией. Очень часто это объясняется невнимательностью, а порою тем, что терминологии не придается должного значения, и вот что получается. Не все абитуриенты, например, четко знают названия (номенклатуру) химических соединений. На экзамене предлагают написать формулу сернистого калия, а отвечающие пишут формулу сернистокислого калия (K2S03) и даже сернокислого калия (K2S04).
Далее. Необходимо четко знать, что называется окислителем, восстановителем. Не путать такие понятия, как валентность атома в соединении и заряд иона.
Например в соединении HN03 валентность элементов HN03. В растворе это соединение диссоциирует на ионы Н1 и N03. Ни о каких ионах N5+ речи быть не может. Между тем, абитуриенты нередко говорят, что окислителем в этом соединении может выступать ион N5+.
Экзаменующийся должен показать знание общей характеристики важнейших элементов и их основных соединений, т. е. четко описать положение элемента в системе и на основе закономерностей, которые изучены в средней школе, показать знание свойств важнейших соединений этого элемента.
Рассказ о свойствах соединений, образуемых каким-либо элементом, целесообразно строить в определенной логической последовательности: положение элемента в системе, его электронная конфигурация, свойства простого вещества (тип связи), свойства его соединений (тип связи).
Одним из требований «Общих указаний» к абитуриентам является умение пользоваться периодической системой Д. И. Менделеева в пределах объема программы. Речь идет в данном случае не только о необходимости подробно знать строение и свойства томов элементов первых трех периодов системы, но и об умении применить знание общих закономерностей к описанию свойств тех элементов, изучение которых не было предусмотрено программой по химии средней школы. Например, нужно уметь описать свойства мышьяка или олова, написать несколько характерных соединений хрома или какого-либо другого элемента дополнительной подгруппы. Разумеется, это можно сделать, исходя из знания свойств известных элементов.
Экзаменующийся должен показать понимание важнейших химических производственных процессов. От него не требуется знании деталей аппаратуры, лабораторных приемов, особенностей течения реакций и т. п. Надо знать химическую сторону производственных процессов, а также основные принципы, на которых строится осуществление и экономическая эффективность важнейших процессов.
Во втором разделе «Общих указаний» сказано, что от экзаменующихся требуется знание тех свойств важнейших веществ, на которых основано их применение в народном хозяйстве. Абитуриенты должны обратить внимание на такие разделы учебника по неорганической химии, как применение серной кислоты, применение соляной кислоты в народном хозяйстве и т. п.
И, наконец, в «Общих указаниях» подчеркивается, что экзаменующийся должен показать умение решать качественные задачи применительно к материалу, указанному в программе.
В настоящем пособии будут рассмотрены наиболее типичные задачи.

§ 1. О ПРЕДМЕТЕ ХИМИИ
В литературе по химии можно встретить следующие определения предмета химии:
«Химия - наука о химических элементах» (Д. И. Менделеев).
«Химия - наука о веществах, их превращениях и явлениях, сопровождающих эти превращения» (наиболее распространенное определение химии).
«Химия XX века - это наука о синтезе материалов с определенными свойствами» (определение химии, которое приводится в последнее время).
Нельзя сказать, что одно определение лучше, другое хуже, одно правильно, другое нет. Каждое из приведенных определений правильно, хотя и подчеркивает какую-то одну преимущественную сторону химической науки.
Обратите внимание на второе определение и на последовательность в перечислении объектов изучения.
Вещества. Их превращения. Явления, сопровождающие эти превращения.
Само вещество и его превращения изучает не только химия, но и другие науки, например, смежные с химией физика и биология. Значит, каждая из этих наук изучает не все и не всякие превращения вещества. Химию интересуют только те превращения, при которых происходит изменение состава вещества, приводящее к качественному изменению свойств веществ. Плавление льда или кипение воды изучает физика, а взаимодействие воды с натрием или серной кислотой изучает химия, потому что в первом случае меняется только агрегатное состояние вещества,но не состава, а во втором - исходные и конечные вещества отличаются составом и свойствами, не только физическими, но и химическими.
Ясно, что совершающиеся в химических процессах изменения находятся в прямой зависимости оттого, из каких элементов состоят взаимодействующие вещества.
Степень развития любой науки определяется тем, что дает она для практики, находят ли реализацию сделанные в ней открытия. XVIII век называют веком пара, XIX - веком электричества; по аналогии XX век назвали веком атомной энергии, синтетических (искусственных) материалов и раскрытия тайн жизни. Человечество издавна стремилось к овладению энергетическими ресурсами, и наиболее ощутимые успехи в этой области были сделаны физикой. Проблема создания материалов широкого ассортимента с заданными свойствами встает только в последние десятилетия.
Синтез новых материалов был бы невозможен без выявления специфических особенностей химии каждого элемента.
Развитие ракетной, ядерной, полупроводниковой техники было бы невозможно без создания новых материалов.
Третье из приведенных выше определение предмета химии подчеркивает именно эту сторону ее развития, наметившуюся в последние десятилетия.

§ 2. Значение химии, роль химии в создании материально-технической базы коммунизма
Значение химии. По мере развития человеческого общества проявляется все возрастающая роль химии в овладении энергетическими и материальными ресурсами природы. Так, наряду с механической обработкой дерева и камня получила распространение их химическая обработка; выплавка металлов из руд, химический синтез и т. п.
От примитивного использования топлива для получения тепла человечество перешло к более широкому использованию древесины, угля и нефти, на основе которых получены не только новые виды топлива (например, газообразное), но и целый ряд других важнейших продуктов. В свою очередь, энергию химического пронесен научились превращать в электрическую (гальванические апменты, аккумуляторы, топливные элементы). Наконец в настоящее время осуществляется широкое производство материалов с определенными, заранее заданными свойствами. Начинается активное вмешательство химии в деятельность живого организма.
Широкое промышленное использование достижений химии ока-шлось возможным лишь на определенной ступени развития человеческого общества, на определенной ступени развития производиых сил общества. Для осуществления химического синтеза, химической переработки материалов необходимы соответствующие установки и аппараты, приборы для контроля, автоматизация производства, достаточные энергетические мощности, предварительная подготовка сырья.
Роль химии в создании материально-технической базы коммунизма. В Программе Коммунистической партии Советского Союза, принятой на XXII съезде КПСС, говорится, что главная экономическая задача партии и советского народа состоит в том, чтобы в течение двух десятилетий создать материально-техническую базу коммунизма. Для создания такой базы необходимо также широкое применение химии в народном хозяйстве.
Академик А. Е. Ферсман писал в одной из своих работ: «....идея химизации в сочетании с идеей электрификации - идея исключительной важности, ибо она переводит на более высокую ступень использование природных богатств...».
Химизация народного хозяйства означает: 1) создание постоянной материальной базы для осуществления и совершенствования технологических процессов; 2) внедрение во все отрасли промышленности и быт химических методов переработки веществ, приводящих к коренному изменению технологии и экономики производства, бытовых и культурных условий жизни и труда населения; 3) увеличение количества и качества промышленной и сельскохозяйственной продукции.
В результате развития химической промышленности в нашей стране в 1940 г. объем химической продукции возрос в 18 раз по сравнению с 1913 г., а в 1951 г. наша страна вышла на второе место в мире (после США) по общему объему производства химических продуктов, а по некоторым показателям (кокс, стекло, цемент) мы находимся на первом месте. За годы Советской власти советскими учеными были разработаны многие важные научные и технологические проблемы. Достаточно сказать, например, что в СССР впервые в мире был получен синтетический каучук и разработана технология его промышленного производства, получены искусственные алмазы, созданы новые материалы для космической и ядерной техники.
Работы А. Е. Фаворского и его школы по синтезу диеновых углеводородов и на их базе новых полимеров, А. Н. Несмеянова и его школы - в области элементоорганических соединений, К. А. Андрианова - по синтезу кремнийорганических соединений, Г. А. Ра-зуваева - по химии свободных радикалов, Н. Н. Семенова и его школы в области химической кинетики, Г. Н. Флерова с сотрудниками по получению трансурановых элементов (№ 102, № 104) сыграли огромную роль в развитии отечественной и мировой химической науки, в выполнении задач коммунистического строительства в нашей стране.
В директивах XXIII съезда КПСС предусматривается дальнейший рост темпов развития химической и нефтехимической промышленности. Так, намечается к 1970 г. рост производства минеральных удобрений, химических волокон и газа почти в 2 раза, а пластических масс и смол - почти в 3 раза.
Современное развитие науки ставит на очередь решение ряда комплексных задач и проблем, таких, как проблемы онкологии, вирусологии, генетики, с одной стороны (связь с биологией), и. с другой стороны, химия плазмы, химия элементарных частиц, космохимия (связь с физикой).

Глава I
ОСНОВНЫЕ ПРЕДСТАВЛЕНИЯ АТОМНО-МОЛЕКУЛЯРНОЙ ТЕОРИИ. ВАЖНЕЙШИЕ ЗАКОНЫ ХИМИИ

Исторически изучение вещества шло последовательными этапами: от познания видимого, доступного органам чувств и простейшим приборам, к проникновению в мир частиц и явлений, познание которых возможно с помощью очень чувствительных приборов. Еще в древности была высказана мысль об атомном строении вещества. В начале XIX в. была разработана атомно-молекулярная гипотеза, согласно которой все вещества состоят из молекул, а молекулы - из атомов. Атом - наименьшая частица вещества.
Это познание вещества средствами химии можно представить схематически следующим образом:
тела природы
химические соединения - молекулы - атомы
В создании основ атомно-молекулярной теории важную роль сыграли исследования реакций окисления металлов, проведенные в XVIII в. М. В. Ломоносовым и А. Лавуазье. Ими же был сформулирован закон сохранения массы реагирующих веществ.
Однако объяснение как этого закона, так и других понятий того времени (эквиваленты), возникших в результате изучения весовых количеств реагирующих веществ, оказалось возможным в XIX в. с позиций атомной теории Дальтона и молекулярной теории Авогадро.
Периодический закон и периодическая система химических элементов, открытые Д. И. Менделеевым в 1869 г., способствовали «акреплению атомистических представлений в химии. Открытие Д. II. Менделеева ознаменовало начало нового этапа в развитии учения о строении материи, в раскрытии сложного строения атома.
Спектральный анализ и открытие рентгеновских лучей, открытие инертных газов и явления радиоактивности, определение заряда и массы электрона привели к экспериментальному раскрытию сложного строения атомов.

§ 1. АТОМНО-МОЛЕКУЛЯРНАЯ ТЕОРИЯ
Атомно-молекулярное учение - это первое учение о строении вещества, разработанное на основе количественных представлений, главным образом, двух наук - физики и химии. Само название «атомно-молекулярное учение» подсказывает, что вопросы строения вещества рассматриваются здесь на уровне атомов и молекул. Это учение указывает на качественные различия в составе вещества (молекулы и атомы) и дает количественные характеристики (вес атомов и молекул), а для веществ в газообразном состоянии и объем грамм-молекулы.
Согласно этому учению, вещества состоят из атомов и молекул. Молекула сложнее атома. Молекула простого вещества состоит из атомов одного элемента, молекула сложного - из атомов разных элементов.
Молекулы - наименьшие частицы вещества, сохраняющие его состав и химические свойства.
Атомы - наименьшие материальные частицы элемента, отражающие его химические свойства в свободном состоянии.
В то же время атомы являются составными частями молекул, которыми последние обмениваются при химических реакциях.
Кратко сущность атомно-молекулярного учения сводится к следующему:
1. Все вещества состоят из атомов и молекул.
2. Атомы разных элементов отличаются весом, размерами и свойствами. Молекулы одного и того же вещества одинаковы, молекулы разных веществ отличаются составом, весом, размерами, физическими и химическими свойствами.
1 В соответствии с современными представлениями о строении вещества, основанными на учении о типах химической связи, утверждение о том, что все вещества состоят из молекул, нуждается в уточнении (см. далее, стр. 98)


KOHEЦ ФPAГMEHTA КНИГИ