Какие есть признаки равенства треугольников. Первый признак равенства треугольников

Геометрическая фигура, сформированная тремя отрезками, которые соединяют три точки, не принадлежащие одной прямой.

Стороны треугольника формируют в вершинах треугольника три угла. Перефразируя, треугольник - это многоугольник , у которого три угла.

Практическое значение признаков равенства треугольников сводится к нижеследующему: согласно формулировке треугольники равны , в случае когда получается их наложить друг на друга так, чтобы они совпали; однако реализовать наложение треугольников иногда бывает трудно, а иногда и невозможно.

Признаки равенства треугольников позволяют заменить наложение треугольников нахождением и сопоставлением отдельных основополагающих компонентов (сторон и углов) и таким образом обосновать равенство треугольников.

3. Все три стороны:

Еще выделяют четвертый признак , который не так широко освещен в школьном курсе математики как предыдущие три. Он формулируется следующим образом:

Если две стороны первого треугольника соответственно равны двум сторонам второго треугольника и угол, противолежащий большей из этих сторон в первом треугольнике, равен углу, противолежащему соответственно равной ей стороне во втором треугольнике, то эти треугольники равны .

Признаки равенства треугольников

Равными называют треугольники, у которых соответствующие стороны равны.

Теорема (первый признак равенства треугольников).
Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.

Теорема (второй признак равенства треугольников).
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Теорема (третий признак равенства треугольников).
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Признаки подобия треугольников

Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны: , , где - коэффициент подобия.

I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.

II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

1) по двум сторонам и углу между ними

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол A равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 . Докажем, что треугольники равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы угол A совместился с углом A 1 . Так как АВ=А 1 В 1 , а АС=А 1 С 1 , то B совпадёт с В 1 , а C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

2) по стороне и прилежащим к ней углам

Доказательство:

ПустьАВС и А 1 В 1 С 1 - два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Наложим треугольник ABC (либо симметричный ему) на треугольник A 1 B 1 C 1 так, чтобы AB совпало с A 1 B 1. Так как ∠ВАС =∠В 1 А 1 С 1 и ∠АВС=∠А 1 В 1 С 1 , то луч АС совпадёт с А 1 С 1 , а ВС совпадёт с В 1 С 1 . Отсюда следует, что вершина C совпадёт с С 1. Значит, треугольник А 1 В 1 С 1 совпадает с треугольником АВС, а следовательно, равен треугольнику АВС.

Теорема доказана.

3) по трём сторонам

Доказательство :

Рассмотрим треугольники ABC и A l B l C 1, у которых АВ=А 1 В 1 , BC = B l C 1 СА=С 1 А 1. Докажем, что ΔАВС =ΔA 1 B 1 C 1 .

Приложим треугольник ABC (либо симметричный ему) к треугольнику A 1 B 1 C 1 так, чтобы вершина А совместилась с вершиной A 1 , вершина В — с вершиной В 1 , а вершины С и С 1 , оказались по разные стороны от прямой А 1 В 1 . Рассмотрим 3 случая:

1) Луч С 1 С про-ходит внутри угла А 1 С 1 В 1 . Так как по условию теоремы стороны АС и A 1 C 1 , ВС и В 1 С 1 равны, то треугольники A 1 C 1 C и В 1 С 1 С — равнобедренные . По теореме о свойстве углов равнобедренного треугольника ∠1 = ∠2, ∠3 = ∠4, поэтому ∠ACB=∠A 1 C 1 B 1 .

2) Луч С 1 С совпадает с одной из сторон этого угла. A лежит на CC 1 . AC=A 1 C 1 , BC=B 1 C 1 , C 1 BC - равнобедренный , ∠ACB=∠A 1 C 1 B 1 .

3) Луч C 1 C проходит вне угла А 1 С 1 В 1 . AC=A 1 C 1 , BC=B 1 C 1 , значит, ∠1 = ∠2, ∠1+∠3 = ∠2+∠4, ∠ACB=∠A 1 C 1 B 1 .

Итак, AC=A 1 C 1 , BC=B 1 C 1 , ∠C=∠C 1 . Следовательно, треугольники ABC и A 1 B 1 C 1 равны по
первому признаку равенства треугольников.

Теорема доказана.

2. Деление отрезка на n равных частей.

Провести луч через A, отложить на нём n равных отрезков. Через B и A n провести прямую и к ней параллельные через точки A 1 - A n -1. Отметим их точки пересечения с AB. Получим n отрезков, которые равны по теореме Фалеса.

Теорема Фалеса. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.


Доказательство. AB=CD

1. Проведём через точки A и C прямые, параллельные другой стороне угла. Получим два параллелограмма AB 2 B 1 A 1 и CD 2 D 1 C 1 . Согласно свойству параллелограмма : AB 2 = A 1 B 1 и CD 2 = C 1 D 1 .

2. ΔABB 2 =ΔCDD 2 ABB 2 CDD 2 BAB 2 DCD 2 и равны на основании второго признака равенства треугольников:
AB = CD согласно условию теоремы,
как соответственные, образовавшиеся при пересечении параллельных BB 1 и DD 1 прямой BD.

3. Аналогично каждый из углов и оказывается равным углу с вершиной в точке пересечения секущих. AB 2 = CD 2 как соответственные элементы в равных треугольниках.

4. A 1 B 1 = AB 2 = CD 2 = C 1 D 1

Подгорный Максим

Материал исследовательской работы может использоваться для кружков по геометрии в 7 классе

Скачать:

Предварительный просмотр:

МБУ ДО города Ростова-на-Дону «Дворец творчества детей и молодежи»

Донская академия наук юных исследователей им. Ю. А. Жданова

Математика

Тема: «Нестандартные теоремы о равенстве треугольников»

Подгорный Максим, 7 кл.,

МБОУ СОШ № 3,

Руководитель:

Олейникова Людмила Александровна,

учитель математики,

МБОУ СОШ № 3,

г. Сальск, Ростовская область

г. Ростов-на-Дону

2017 год

Введение………………………………………………………….………………3

Основная часть

Признаки равенства треугольников…………………………………………… 4

Нестандартные признаки равенства треугольников………………………….7

Заключение…………………………………………………………………… 10

Список литературы…………………………………………………………… 11

Приложение

Введение.

Актуальность:

Треугольник одна из основных фигур в планиметрии. Я много слышал от старшеклассников, что при подготовке к ЕГЭ им часто приходится доказывать равенство треугольников. И оказывается недостаточным знание основных признаков. Мне захотелось узнать, а можно ли доказать равенство треугольников по другим параметрам. В учебнике геометрии, по которому обучаются ученики нашей школы (авторы Л.С.Атанасян, В.Ф.Бутузов и др. Геометрия 7-9) рассматриваются всего 3 признака равенства треугольников. Я просмотрел учебно-методические комплекты других авторов. Но и в них для изучения предлагаются только три известные теоремы.

Гипотеза:

Возможно, ли сформулировать, кроме трех известных, другие признаки равенства треугольников?

Чтобы убедиться в том, что ответ на этот вопрос волнует не только меня, я провел социологический опрос среди учащихся 7-11 классов см. приложение 1).

Мои предположения подтвердились. Большенство учеников знают только три признака равенства треугольников.

Таким образом, целью моего исследования стало отыскание новых признаков равенства треугольников.

Задачи:

ΘИзучить литературу по исследуемой теме.

ΘУточнить количество признаков равенства треугольников.

ΘПродемонстрировать своим одноклассникам и учащимся нашей школы существование других признаков равенства треугольников и возможности их доказательства.

Объект исследования:

Изучение признаков равенства треугольников.

Предмет исследования . Треугольник, как одна из основных фигур в планиметрии.

Метод исследования: Теоретический (изучение, анализ и синтез),системно-поисковый, практический (доказательство теорем).

Историческая справка

Треугольник является одной из центральных фигур всей геометрии.

При решении задач используют его самые разнообразные свойства.

Свойства треугольника широко применяют на практике: в архитектуре; при разработке чертежа здания, при планировке будущих квартир; в промышленности, при проектировании различных деталей, при изготовлении стройматериалов, при строительстве морских и авиа судов; в навигации для проложения правильного и максимально точного маршрута; в астрологии и астрономии треугольник является очень значимой фигурой; треугольники делают надежными конструкции высоковольтных линий электропередач и железнодорожных мостов.

Кроме того, много других сфер, где применяются различные свойства треугольника: начиная игру в бильярд, необходимо расположить шары в виде треугольника, для этого используют специальное приспособление; расстановка кеглей в игре Боулинг тоже в виде равностороннего треугольника; для составления красивых паркетов используются треугольники; устройство треугольника Паскаля: каждое число равно сумме двух расположенных над ним чисел (обвести треугольником три числа). Все элементарно, но сколько в этом таится чудес! Треугольник Паскаля компьютер перевёл на язык цвета.

Тему треугольника можно продолжать неограниченно.

Каких только треугольников нет на свете!

Существуют также переносные значения данной фигуры: например, правило «золотого треугольника» основано на психологии покупателя – найдя нужный ему товар, покупатель устремляется в кассу. Задача продавцов – заставить его задержаться в магазине подольше, расположив нужный покупателю товар в вершинах воображаемого треугольника, то есть «заякорить» покупателя. Чем больше площадь треугольника, тем более удачным можно назвать планировку магазина. В продуктовом магазине этими товарами-якорями являются гастрономия, молочная продукция, хлеб. Задняя торцевая стена торгового зала является вторым местом по значимости и именно там целесообразнее всего располагать товары-якоря – именно для того, что бы заставить покупателя пройти весь периметр магазина.

Широко известный Бермудский треугольник – это район в Атлантическом океане, в котором происходят якобы таинственные исчезновения морских и воздушных судов. Район ограничен линиями от Флориды к Бермудским островам, далее к Пуэрто-Рико и назад к Флориде через Багамы.

Поэтому изучение треугольника и всех его свойств – очень актуальная тема.

Цель данной работы – рассказать о признаках равенства треугольников, что является одним из важнейших их свойств.

Признаки равенства треугольников - это теоремы, на основании которых можно доказать, что некоторые треугольники равны.

В геометрии используются три признака равенства треугольников.

Данная тема практически изучена, так как на сегодняшний день существуют три признака равенства треугольников, доказываемых с помощью соответствующих теорем.

В глубокой древности вместе с астрономией появилась наука – тригонометрия. Слово «тригонометрия» произведено от греческих «треугольник» и «меряю». Буквальное значение – «наука об измерении треугольников».

С помощью натянутых веревок длиной 3, 4 и 5 единиц египетские жрецы получали прямые углы при возведении храмов и т.п.

Искусство изображать предметы на плоскости с Древних времён привлекает к себе внимание человека, люди рисовали на скалах, стенах, сосудах и прочих предметах быта, различные орнаменты, растения, животных. Люди стремились к тому, чтобы изображение правильно отображало естественную форму предмета.

Учение о подобии фигур на основе теории отношений и пропорций было создано в Древней Греции в 5-4 веках до нашей эры и существует и развивается до сих пор. Например, очень много детских игрушек подобным предметам взрослого мира, обувь и одежда одного фасона выпускается различных размеров. Эти примеры можно продолжать и дальше. В конце концов, все люди подобны друг другу и как утверждает Библия, создал их бог по своему образу и подобию.

Признаки равенства треугольников имели издавна важнейшее значение в геометрии, так как доказательства многочисленных теорем сводилось к доказательству равенства тех или иных треугольников. Доказательством признаков равенства треугольников занимались еще пифагорейцы. По словам Прокла, Евдем Родосский приписывает Фалесу Милетскому доказательство о равенстве двух треугольников, имеющих равными сторону и два прилежащих к ней угла (второй признак равенства треугольников).

Эту теорему Фалес использовал для определения расстояния от берега до морских кораблей. Каким способом пользовался при этом Фалес, точно не известно.

Признаки равенства треугольников.

Начнем с определения. Треугольники АВС и А1В1С1 называются равными, если их можно совместить наложением.

Треугольник состоит из шести элементов: трех углов и трех сторон.

При этом возникает вопрос: " Какое наименьшее количество элементов треугольника нужно взять для установления равенства двух треугольников?"

Мы не сможем установить равенство двух треугольников по одному элементу, потому что неизвестно:"Будут ли равны остальные элементы?"

Так же невозможно установить равенство двух треугольников, используя два элемента по причине нехватки информации для установления равенства.

Возможно установление равенства двух треугольников, используя три элемента. Но при этом возникает вопрос: "Какие именно три элемента нужно назвать, для установления равенства треугольников?"

При изучении этого вопроса, я просмотрел школьные учебники геометрии различных авторов, а также словари и справочники. В учебниках за седьмой класс предложены к изучению только три признака равенства треугольников.

Θ1 Признак : Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны . рис.1

Доказательство. Рассмотрим треугольники ABC и A 1 B 1 C 1 , (рис. 1) у которых АВ = A 1 B 1 , АС = A 1 C 1 ∠ А = ∠ А 1 . Докажем, что ΔABC = ΔA 1 B 1 C 1 .

Так как ∠А = ∠А 1 , то треугольник ABC можно наложить на треугольник А 1 В 1 С 1 так, что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А 1 В 1 и A 1 C 1 . Поскольку АВ = A 1 B 1 , АС = А 1 С 1 , то сторона АВ совместится со стороной А 1 В 1 а сторона АС - со стороной А 1 C 1 ; в частности, совместятся точки В и В 1 , С и C 1 . Следовательно, совместятся стороны ВС и В 1 С 1 . Итак, треугольники ABC и А 1 В 1 С 1 полностью совместятся, значит, они равны.

А вот как в Древнем Египте применили первый признак равенства треугольников (по двум сторонам и углу между ними), создателем его также считается Фалес Милетский, для измерения высоты пирамиды: представим, что мы стоим перед огромной пирамидой, как же измерить её высоту? Ведь к ней не приложишь измерительные приборы! И тут на помощь Фалесу Милетскому приходит первый признак равенства треугольников: он подождал пока тень его точно совпадёт с его ростом, применил теорему, получилось, что высота пирамиды равна её тени (рис. 2).

Рис. 2

Θ2 Признак: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Доказательство: Если в △АВС и △А 1 В 1 С 1 будут иметь место следующие равенства AB=А 1 В 1 , ∠BAC=∠B 1 A 1 C 1 , ∠АВС= ∠А 1 В 1 С 1 . Наложим друг на друга треугольники А 1 В 1 С 1 и АВС таким образом, чтобы совпали равные стороны AB и А 1 В 1 и углы, которые к ним прилегают. Как и в уже рассмотренном предыдущем примере, если это необходимо, треугольник А 1 В 1 С 1 можно "перевернуть и приложить обратной стороной". Треугольники совпадут, следовательно, они могут считаться равными.

Θ3 Признак : Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны. Доказательство:Пусть для △ABC и △A 1 B 1 C 1 справедливы равенства А 1 В 1 =АВ, В 1 С 1 =ВС, С 1 А 1 =СА. Переместим треугольник А 1 В 1 С 1 таким образом, что сторона А 1 В 1 совпадет со стороной АВ, и вершины B 1 и B, A 1 и A, совпадут. Возьмем окружность с центром в A и радиусом AC, и вторую окружность с центром B и радиусом BC. Эти окружности пересекутся в двух симметричных относительно отрезка AB точках: точкой C и точкой C 2 . Значит, C1 после переноса треугольника A1B1C1 должна совпасть или с точками C, или с C2. Любом случае, это будет означать равенство △ABC=△A 1 B 1 C 1 , так как треугольники △ABC=△ABC 2 равны (ведь эти треугольники являются симметричными относительно отрезка AB .

Это свойство – жесткость треугольника – широко используется на практике. Так, чтобы закрепить столб в вертикальном положении, к нему ставят подпорку; такой же принцип используется при установке кронштейна.

Свойство жесткости треугольника широко используют в практике при строительстве железных конструкций.

Из третьего признака равенства треугольников следует, что треугольник - жёсткая фигура. Потому, что: можно представим себе две рейки, у которых два конца скреплены гвоздем. Такая конструкция не является жёсткой, однако, сдвигая или раздвигая свободные концы реек, мы можем менять угол между ними. Теперь возьмем ещё одну рейку и скрепим её концы со свободными концами первых двух реек. Полученная конструкция - треугольник - будет уже жёсткой. В ней нельзя сдвинуть или раздвинуть никакие две стороны, т. е. нельзя изменить ни один угол. Действительно, если бы это удалось, то мы получили бы новый треугольник, не равный исходному. Но это невозможно, так как новый треугольник должен быть равен исходному по третьему

В справочнике по элементарной математике М. Я. Выгодского я нашел еще один признак.

Θ4 Признак: Если две стороны и угол, лежащий против большей из них одного треугольника соответственно равны двум сторонам и углу, лежащему против большей из них другого треугольника, то такие треугольники равны.

Докажу этот признак.

Дано : ΔABC , ΔA1B1C1 , AB=A1B1,AC=A1C1, ∠ B= ∠ B1

Доказать: ΔABC=A1B1C1.

Расположим треугольники так, как на рисунке 1 . Соединим B и B1, тогда ΔАВВ1

Равнобедренный, значит ∠ 1= ∠ 2. ∠ 3= ∠ 4 как остатки равных углов.

Получим ΔВСВ1- равнобедренный, отсюда ВС=В1С1. ΔАВС = ΔА1В1С1 по трем сторонам.

Также в школьном курсе рассматриваются 4 признака равенства прямоугольных треугольников:

Θ1 . Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

Θ2 . Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.

Θ3 . Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

Θ4 . Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

Я решил теоретическую базу по признакам равенства треугольников, довавив к сторонам и углам, используемым в класических признаках равенства треугольников, другие компоненты: биссектрису, медиану и высоту.

Нестандартные признаки равества треугольников.

1) По двум сторонам и высоте проведенной к одной из них.

Дано: AB=A1B1 , BC=B1C1 , AK=A1K1 ,

Доказать: ΔABC= ΔA1B1C1 .

Доказательство: ΔABK=ΔA1B1K1 по гипотенузе и катету, тогда ∠ B= ∠ B1 и получим ΔABC= ΔA1B1C1 по первому признаку.

2) По двум сторонам и медиане, проведенной к одной из них

Дано: AB=A1B1 , BC=B1C1 , AK=A1K1 , AK и A1K1 - медианы.

Доказать: ΔABC= ΔA1B1C1 .

Доказательство:ΔABK=ΔA1B1K1 по трем сторонам, значит ∠ B= ∠ B1 и ΔABC= ΔA1B1C1 по первому признаку.

3) По двум сторонам и высоте, проведенной из третьего угла.

Дано: ∠ B= ∠ B1 , ∠ C= ∠ C1 , AK=A1K1 .

Доказать: ΔABC= ΔA1B1C1 .

Доказательство: ΔABK=ΔA1B1K1 по катету и острому углу, значит BK=B1K1 ,

ΔACK=ΔA1C1K1 по катету и острому углу, значит KC=K1C1 , а следовательно BC=B1C1 , а ΔABC= ΔA1B1C1 по второму признаку.

4)По стороне и двум высотам, проведенным из углов, прилежащих к этой стороне.

Дано: АС=А1С1, СМ=С1М1, АК=А1К1.

Доказать: ΔСC= ΔA1B1C1 .

Доказательство: ΔAМC= ΔA1М1C1 по катету и гипотенузе, значит ∠ А= ∠ А1 , а ΔAКC= ΔA1К1C1 по катету и гипотенузе, значит ∠ С= ∠ С1 .

Итак, ΔABC= ΔA1B1C1 по второму признаку.

5)По двум сторонам и высоте, проведеннойк третьей стороне.

Дано: АВ=А1В1,ВС=В1С1,ВК=В1К1.

Доказать: ΔABC= ΔA1B1C1 .

Доказательство: ΔABK=ΔA1B1K1 по гипотенузе и катету, значит AK=A1K1,

ΔBКC= ΔB1К1C1 по катету и гипотенузе, значит KC=K1C1 .

Итак,ΔABC= ΔA1B1C1 по трем сторонам.

6)По стороне, одному из углов, прилежайщих к этой стороне и биссектрисе из этого угла.

Дано: АС=А1С1, АК=А1К1, ∠ А ∠ А1 .

Доказать: ΔABC= ΔA1B1C1 .

Доказательство: ΔКАС=ΔК1А1С1 по первому признаку, значит ∠ С= ∠ С1 ,

ΔABC= ΔA1B1C1 по второму признаку.

7) По двум высотам и углу, из которого провдена одна из высот.

Дано: СМ=С1М1, АК=А1К1, ∠ А ∠ А1 .

Доказать: ΔABC= ΔA1B1C1 .

Доказательство: ΔAМC= ΔA1М1C1 по катету и острому углу,ΔКАС=ΔК1А1С1 по катету и гипотенузе,ΔABC= ΔA1B1C1 по второму признаку.

Заключение.

В ходе исследования я выяснил, что помимо трех основных признаков равенства треугольников возможно указать немало других. Я сформулировал и доказал равенство треугольников по медиане, высоте, биссектрисе треугольника в сочетании со сторонами и углами треугольника, придерживаясь наличия трех элементов. Теперь я могу рассказать учащимся нашей школы, что существуют другие признаки равенства треугольников. Это позволит выпускникам школы применить результаты моих исследований при подготовке к ОГЭ и ЕГЭ и легко решать геометрические задачи на применение этих признаков.

Результат моего исследования : Доказаны несколько признаков равенства треугольников, не изучаемых в школьном курсе геометрии.

Список литературы

  1. Выгодский М.Я. Справочник по элементарной математике.
  2. Геометрия. 7-9 классы: учеб. Для общеобразоват. учреждений/Л.С.Атанасян, В.Ф.Бутузов, С.Б. Кадомцев и др. – 19-е изд. – М. : Просвещение, 2009.
  3. Погорелов А. В. Геометрия: Учеб. Для 7-9 кл. общеобразоват. Учреждений. – 3-е издание. – М.: Просвещение, 2002.
  4. . Энциклопедия «Аванта» по математике, Москва, 2004 г.
  5. 2. «Википедия» - свободная энциклопедия.
  6. 3. Глейзер Г.И. «История математики в школе», Москва, Просвещение, 1982 г.
  7. 4. Гусева Т.М. Признаки подобия треугольников.- Москва, Первое сентября, приложение «Математика», 1999 г., №28
  8. 5. Погорелов А.В. «Геометрия 7-9 классы», Москва, Просвещение, 2003 г.

Приложение 1

1.Как вы считаете, сколько существует признаков равенства треугольников?

А) 3 Б) более трех В) меньше трех

2. Хотели бы вы узнать новые признаки равенства треугольников?

А) да Б) нет


Два треугольника называются равными, если их можно совместить наложением. На рисунке 1 изображены равные треугольники ABC и А 1 В 1 С 1 . Каждый из этих треугольников можно наложить на другой так, что они полностью совместятся, т. е. попарно совместятся их вершины и стороны. Ясно, что при этом совместятся попарно и углы этих треугольников.

Таким образом, если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Отметим, что в равных треугольниках против соответственно равных сторон (т. е. совмещающихся при наложении) лежат равные углы, и обратно: против соответственно равных углов лежат равные стороны.

Так, например, в равных треугольниках ABC и A 1 B 1 C 1 , изображенных на рисунке 1, против соответственно равных сторон АВ и А 1 В 1 лежат равные углы С и С 1 . Равенство треугольников ABC и А 1 В 1 С 1 будем обозначать так: Δ ABC = Δ А 1 В 1 С 1 . Оказывается, что равенство двух треугольников можно установить, сравнивая некоторые их элементы.

Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).

Доказательство. Рассмотрим треугольники ABC и A 1 B 1 C 1 , у которых АВ = A 1 B 1 , АС = A 1 C 1 ∠ А = ∠ А 1 (см. рис.2). Докажем, что Δ ABC = Δ A 1 B 1 C 1 .

Так как ∠ А = ∠ А 1 , то треугольник ABC можно наложить на треугольник А 1 В 1 С 1 так, что вершина А совместится с вершиной А 1 , а стороны АВ и АС наложатся соответственно на лучи А 1 В 1 и A 1 C 1 . Поскольку АВ = A 1 B 1 , АС = А 1 С 1 , то сторона АВ совместится со стороной А 1 В 1 а сторона АС - со стороной А 1 C 1 ; в частности, совместятся точки В и В 1 , С и C 1 . Следовательно, совместятся стороны ВС и В 1 С 1 . Итак, треугольники ABC и А 1 В 1 С 1 полностью совместятся, значит, они равны.

Аналогично методом наложения доказывается теорема 2.

Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).

Замечание. На основе теоремы 2 устанавливается теорема 3.

Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.

Из последней теоремы вытекает теорема 4.

Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны ().

Пример 1. В треугольниках ABC и DEF (рис. 4)

∠ А = ∠ Е, АВ = 20 см, АС = 18 см, DE = 18 см, EF = 20 см. Сравнить треугольники ABC и DEF. Какой угол в треугольнике DEF равен углу В?

Решение. Данные треугольники равны по первому признаку. Угол F треугольника DEF равен углу В треугольника ABC, так как эти углы лежат против соответственно равных сторон DE и АС.

Пример 2. Отрезки АВ и CD (рис. 5) пересекаются в точке О, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок АС равен 6 м?

Решение. Треугольники АОС и BOD равны (по первому признаку): ∠ АОС = ∠ BOD (вертикальные), АО = ОВ, СО = OD (по условию).
Из равенства этих треугольников следует равенство их сторон, т. е. АС = BD. Но так как по условию АС = 6 м, то и BD = 6 м.