Кванторы общности и существования. Кванторы Значение формулы логики предикатов

Рассматриваемые вопросы
1. Кванторы.
2. Квантор всеобщности.
3. Квантор существования.
4. Понятие формулы логики предикатов. Значение формулы
логики предикатов.
5. Равносильные формулы логики предикатов.

Понятие квантора

Квантор - (от лат. quantum - сколько), логическая
операция, дающая количественную характеристику
области предметов, к которой относится выражение,
получаемое в результате её применения.
В обычном языке носителями таких характеристик
служат слова типа "все", "каждый", "некоторый",
"существует",
"имеется",
"любой",
"всякий",
"единственный", "несколько", "бесконечно много",
"конечное число", а также все количественные
числительные.

Операции для предиката

Для предикатов вводятся две новые по
сравнению с логикой высказываний операции:
квантор общности
квантор существования

Квантор общности

Пусть Р(x) – одноместный предикат, определенный на
предметном множестве М.
Универсальным высказыванием, соответствующим
предикату Р(x), называется высказывание:
«каждый элемент множества М удовлетворяет
предикату Р(x)»
или
«для всякого х выполняется предикат»
Это высказывание обозначается - (x)P(x)
Высказывание (x)P(x) считается истинным, если
предикат P(x) тождественно истинный, а ложным –
в противном случае.

Квантор общности

Символ x называется квантором
переменной х, его читают так:
«для всех х»
«для каждого х»
«для любого х»
общности по
Выражение (x)P(x) читается: «для всех х, Р(х)», или
«для каждого х, Р(х)».
Например, x(х=х) – это истинное универсальное
высказывание, а x(х>2) – ложное универсальное
высказывание.

конечном множестве {a1,a2,…am}, то:
P(x) P(a1) P(a2) ... P(am)

Квантор общности

Таким образом, квантор общности
можно понимать как оператор
конъюнкции по квантифицируемой
переменной.

Квантор существования

Экзистенциональным
высказыванием,
соответствующим
предикату
Р(x),
называется
высказывание «существует элемент множества М,
удовлетворяющий
предикату
Р(x)»,
которое
обозначается x P(x) и считается истинным, если
предикат Р(х) выполнимый, а ложным – в противном
случае.
Символ x называют квантором существования, а
выражение x, в котором этот квантор предшествует
переменной х, читают так:
«существует х такой, что…»
«для некоторого х, …»

Квантор существования

НАПРИМЕР
x(х>2) –истинное экзистенциональное высказывание
x(х=х+1) – ложное экзистенциональное высказывание.
Если Р(х)- одноместный предикат, определенный на
конечном множестве {a1,a2,…am}, то
P(x) P(a1) P(a2) ... P(am)

Квантор существования

Таким образом, квантор
существования можно понимать как
оператор дизъюнкции по
квантифицируемой переменной.

10. Примеры

Примеры записей формул и их словесные выражения:
x(x 2 1 (x 1)(x 1)) Для всех х выполняется предикат…
x(x 0)

неравенство...
x(x 0)
Для всех х, справедливо…..
y (5 y 5)
Существует y такой, что 5+y=5
y(y 2 y 1 0)
Для всех y выполняется предикат
y(y 2 y 1 0)
Существует y, что ….
x(x x)
Для некоторого х, справедливо
3
2

11. Формулы логики предикатов

В логике предикатов имеется следующая символика:
Символы p, q, r, …- переменные высказывания, принимающие
два значения: 1- истина, 0 – ложь.
Предметные переменные – x, y, z, …, которые пробегают
значения из некоторого множества М;
x0, y0, z0 – предметные константы, т. е. значения предметных
переменных.
P(·), Q(·), F(·), … - одноместные предикатные переменные;
Q(·,·,…,·), R(·,·, …,·) – n-местные предикатные переменные.
P0(·), Q0(·,·, …,·) – символы постоянных предикатов.
Символы логических операций: , .
Символы кванторных операций: х, х.
Вспомогательные символы: скобки, запятые.

12. Формулы логики предикатов

Предметная переменная называется свободной, если она
не следует непосредственно за квантором и не входит в
область действия квантора по этой переменной, все другие
переменные,
входящие
в
формулу,
называются
связанными.
y z (P(x,y) P(y,z))
Формулой логики предикатов являются:
Каждая предикатная буква и предикатная буква со
следующими за ней в скобках предметными переменными.
Выражения вида F G, F G, G, F G, F G, (y)F,
(y)G, где F и G – формулы логики предикатов, переменная
у М.

13. Формулы логики предикатов

Каждое высказывание как переменное, так
постоянное, является формулой (элементарной).
и
Если F(·,·, …,·) – n-местная предикатная переменная
или постоянный предикат, а x1, x2,…, xn– предметные
переменные или предметные постоянные (не
обязательно все различные), то F(x1, x2,…, xn) есть
формула. Такая формула называется элементарной, в
ней предметные переменные являются свободными, не
связанными кванторами.

14. Формулы логики предикатов

Если А и В – формулы, причем, такие, что одна и та же
предметная переменная не является в одной из них
связанной, а в другой – свободной, то слова A B,
A B, A B есть формулы. В этих формулах те
переменные, которые в исходных формулах были
свободны, являются свободными, а те, которые были
связанными, являются связанными.
Если А – формула, то A– формула, и характер
предметных переменных при переходе от формулы А к
формуле A не меняется.

15. Формулы логики предикатов

Если А(х) – формула, в которую предметная
переменная х входит свободно, то слова xA(x) и
xA(x) являются формулами, причем, предметная
переменная входит в них связанно.
Всякое слово, отличное от тех, которые названы
формулами в предыдущих пунктах, не является
формулой.

16. Формулы логики предикатов

Например, если Р(х) и Q(x,y) – одноместный и
двухместный предикаты, а q, r – переменные
высказывания, то формулами будут, выражения:
q, P(x), P(x) Q(x , y), xP(x) xQ(x, y), (Q(x, y) q) r
0
Не является формулой, например, слово: xQ(x, y) P(x)
Здесь нарушено условие п.3, так как формулу
xQ(x,y) переменная х входит связанно, а в формулу
Р(х) переменная х входит свободно.
Из определения формулы логики предикатов ясно, что
всякая формула алгебры высказываний является
формулой логики предикатов.

17. Интерпретация формулы предикатов

Интерпретацией формулы исчисления предикатов
называется конкретизация множеств, из которых
принимают значения предметные переменные и
конкретизация
отношений
и
соответствующих
множеств истинности для каждой предикатной буквы.

18. Формулы исчисления предикатов

тождественно
истинные при
любой
интерпретации,
т.е.
общезначимые
тождественно
ложные
при
любой
интерпретации,
т.е.
противоречивые
выполнимые
(формулы,
истинность
которых зависит
от
интерпретации)

19. Значение формулы логики предикатов

В качестве примера рассмотрим формулу
y z (P(x, y) P(y, z))
В формуле двухместный предикат Р(x, y) определен на
множестве MхM, где M={0,1,2,…,n,…}, т.е. MхM=NхN.
В формулу входит переменный предикат P(x,y), предметные
переменные x,y,z, две из которых y и z – связанные кванторами,
а x – свободная.
Возьмем
за
конкретное
значение
предиката
P(x,y)
фиксированный предикат P0(x,y): «x переменной х придадим значение x0=5 M.
Тогда при значениях y, меньших x0=5, предикат P0(x0,y)
принимает значение “ложь”, а импликация P(x,y) P(y,z) при
всех z M принимает значение “истина”, т.е. высказывание
имеет значение “истина”.

20. Равносильные формулы логики предикатов

Определение 1.

равносильными на области М, если они принимают
одинаковые логические значения при всех значениях входящих в
них переменных, отнесенных к области М.
Определение 2.
Две формулы логики предикатов А и В называются
равносильными, если они равносильны на всякой области.

21. Равносильные формулы логики предикатов

Пусть А(х) и В(х) – переменные предикаты, а С – переменное
высказывание (или формула, не содержащая х). Тогда имеют
место следующие равносильности:

22. Равносильные формулы логики предикатов

Пример
Предикат Мать(x,y) означает, что x является матерью для y.
Тогда y xМать(x,y) означает, что у каждого человека есть
мать, - истинное утверждение.
x yМать(x,y) означает, что существует мать всех людей, что
является другим утверждением, истинность которого зависит от
множества значений, которые могут принимать y: если это
множество братьев и сестер, то оно истинно, а в противном
случае оно ложно.
Таким образом, перестановка кванторов всеобщности и
существования может изменить смысл и значение выражения.

23. Законы логических операций (общезначимые формулы логики предикатов)

24. Упражнение

Найти отрицание следующих формул

25. Упражнение

и
Упражнение
Доказать равносильность
x(A(x) B(x)) xA(x) xB(x)
Пусть предикаты А(х) и В(х) тождественно ложны. Тогда будет
ложным и предикат A(x) B(x)
x(A(x) B(x))
При этом будут ложными высказывания
xA(x) xB(x)
Пусть хотя бы один из предикатов (например, А(х)) не
тождественно ложный. Тогда будет не тождественно ложным и
предикат A(x) B(x)
При этом будут истинными высказывания xA(x) x(A(x) B(x))
Значит, будут истинными и исходные формулы
Следовательно: x(A(x) B(x)) xA(x) xB(x)

26.

Самостоятельно
Для более подробного изучения материала
самостоятельно читаем:
УЧЕБНИК: «Математическая логика и теория
алгоритмов»,
автор Игошин В.И.
Страницы 157-164
Страницы 165-178
Страницы 178-183

27.

Домашнее задание
Доказать равносильность
C xA(x) x(C A(x))
Доказать что формула является общезначимой
A V (P(x) Q(x)) xP(x) xQ(x)
Доказать что формула является противоречивой
A x((F (x) F (x)) (F (x) F (x)))

Функциональная природа предиката влечет за собой введение ещё одного понятия – квантора . (quantum – от лат. «сколько») Кванторные операции можно рассматривать как обобщение операций конъюнкции и дизъюнкции в случае конечных и бесконечных областей.

Квантор общности (все, всякий, каждый, любой (all – «всякий»)). Соответствующие ему словесное выражение звучит так:

«Для всякого x Р(x) истинно». Вхождение переменной в формулу может быть связанным, если переменная расположена либо непосредственно после знака квантора, либо в области действия квантора, после которого стоит переменная. Все прочие вхождения – свободные, переход от P(x) к x(Px) или (Px) называется связыванием переменной x или навешиванием квантора на переменную x (или на предикат P) или квантификацией переменной х. Переменная, на которую навешивается квантор, называется связанной , несвязанная квантования переменная называется свободной .

Например, переменная x в предикате Р(x) называется свободной (x – любое из М), в высказывании Р(x) переменную x называют связанной переменной.

Справедлива равносильность P(x 1)P(x 2)…P(x n),

P(x) – предикат, определенный на множестве М={х 1 ,х 2 ...х 4 }

Квантор существования (exist – «существовать»). Словесное выражение, соответствующее ему, звучит так: “Существует x, при котором Р(x) истинно”. Высказывание xР(x) уже не зависит от x, переменная x связана квантором .

Справедлива равносильность:

xP(x) = P(x 1)P(x 2)…P(x n), где

P(x) - предикат, определенный на множестве М={x 1 ,x 2 …x n }.

Квантор общности и квантор существования называют двойственными, иногда используется обозначение квантора ! – «существует, и притом, только один».

Ясно, что высказывание xP(x) истинно только в том единственном случае, когда Р(x) - тождественно истинный предикат, а высказывание ложно только тогда, когда Р(x) - тождественно ложный предикат.

Кванторные операции применяются и к многоместным предикатам. Применение кванторной операции к предикату P(x,y) по переменной x ставит в соответствие двухместному предикату P(x,y) одноместный предикат xP(x,y) или xP(x,y), зависящий от у и не зависящий от х.

К двухместному предикату можно применить кванторные операции по обеим переменным. Тогда получим восемь высказываний:

1. P(x,y); 2. P(x,y);

3. P(x,y); 4. P(x,y);

5. P(x,y); 6. P(x,y);

7. P(x,y); 8. P(x,y)

Пример 3. Рассмотреть возможные варианты навешивания кванторов на предикат P(x,y) – “x делится на y ”, определенный на множестве натуральных чисел (без нуля) N . Дать словесные формулировки полученных высказываний и определить их истинность.

Операция навешивания кванторов приводит к следующим формулам:



Высказывания “для любых двух натуральных чисел имеет место делимость одного на другое” (или 1) все натуральные числа делятся на любое натуральное число; 2) любое натуральное число является делителем для любого натурального числа) ложные;

Высказывания “существуют такие два натуральных числа, что первое делится на второе” (1. «существует такое натуральное число x, которое делится на какое-то число y»; 2. «существует такое натуральное число y, которое является делителем какого-то натурального числа x») истинны;

Высказывание “существует натуральное число, которое делится на любое натуральное”, ложное;

Высказывание “для всякого натурального числа найдется такое натуральное, которое делится на первое” (или для всякого натурального числа найдется свое делимое), истинное;

Высказывание “для всякого натурального x существует такое натуральное число y, на которое оно делится” (или «для всякого натурального числа найдется свой делитель»), истинное;

Высказывание “существует натуральное число, которое является делителем всякого натурального числа”, истинное (таким делителем является единица).

В общем случае изменение порядка следования кванторов изменяет смысл высказывания и его логическое значение, т.е. например, высказывания P(x,y) и P(x,y) различны.

Пусть предикат P(x,y) означает, что x является матерью для y, тогда P(x,y) означает, что у каждого человека есть мать – истинное утверждение. P(x,y) означает, что существует мать всех людей. Истинность этого утверждения зависит от множества значений, которые могут принимать y: если это множество братьев и сестер, то оно истинно, в противном случае оно ложно. Таким образом, перестановка кванторов всеобщности и существования может изменить сам смысл и значение выражения.

а) заменить начальный знак (или ) на противоположный

б) поставить знак перед остальной частью предиката

Оператор, с помощью которого о к.-л. отдельном объекте преобразуется в высказывание о совокупности (множестве) таких объектов.
В логике используется два основных К.: К. общности, «V», и К. существования, «Э». В естественном языке отдаленными смысловыми аналогами К. общности являются слова «все», «любой», «каждый»; смысловыми аналогами К. существования - слова «некоторые», «существует». С помощью данных К. любое атрибутивное высказывание вида Р(х) о том, что объекту х присуще Р, может быть преобразовано в соответствующее кванторное высказывание вида VхР(х) и вида ЗхР(х). Содержательно сама кванторная формула «VxP(x)» читается как «для всех х имеет Р(х)», а формула «ЭхР(х)» - как «для некоторых х имеет место Р(х)». Высказывание вида VxP(x) истинно, если любой х обладает свойством Р; и ложно, если хотя бы один х не обладает свойством Р. Аналогичным образом, высказывание вида ЗхР(х) истинно, если хотя бы один х обладает свойством Р; и ложно, если ни один х не обладает свойством Р.
На основе элементарных кванторных формул «VxP(x)», «ЭхР(х)» могут быть построены др., более сложные кванторные формулы. Логические взаимосвязи между такими формулами изучаются в логике предикатов. В частности, формула «ЗхР(х)» логически эквивалентна формуле «) VxКВАНТОР| P(x)», а формула «VхР(х)» эквивалентна формуле «) Эх) Р(х)», где «)» - отрицания.
В неявной форме К. использовались уже Аристотелем, однако в строгом содержательном и формальном смысле они впервые были введены в логику Г. Фреге.

Философия: Энциклопедический словарь. - М.: Гардарики . Под редакцией А.А. Ивина . 2004 .

(от лат. quantum - сколько) , оператор логики предикатов, применение крого к формулам, содержащим лишь одну свободную переменную, даёт (высказывание) . Различают К. общности, обозначаемый символом (от англ. all - все) , и К. существования (от exist - существовать) : хР(х) интерпретируется (см. Интерпретация) как «для всех х имеет место свойство Р», а хР(х) - как «существует х такой, что имеет место свойство?(х) ». Если (универсум) конечна, то хР(х) равносильно конъюнкции всех формул Р(а) , где а - элемент предметной области. Аналогично, хР(х) равносильно дизъюнкции всех формул вида? (а) . Если же предметная область бесконечна, то xP(x) и хР(х) могут быть истолкованы соответственно как бесконечные и дизъюнкция. Введение К. в логике многоместных предикатов (т. е. неодноместных) обусловливает неразрешимость исчисления предикатов. Различные соотношения между К. общности и существования и логическими связками логики высказываний формализуются в исчислении предикатов.

Философский энциклопедический словарь. - М.: Советская энциклопедия . Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов . 1983 .

(от лат. quantum - сколько) - логич. оператор, применяемый к логич. выражениям и дающий количеств. характеристику области предметов (а иногда и области предикатов), к к-рой относится получаемое в результате применения К. . В то как логич. средств логики высказываний недостаточно для выражения форм всеобщих, частных и единичных суждений, в логике предикатов, получаемой посредством расширения логики высказываний за счет введения К., такие суждения выразимы. Так, напр., четыре осн. формы суждений традиц. логики "Все А суть В", "Ни одно А не есть В", "Нек-рые А суть В" и "Нек-рые А не суть В" могут быть записаны (если отвлечься от предполагаемого аристотелевой логикой требования непустоты А в общих суждениях) при помощи поясняемой ниже символики следующим образом: ∀(х) (А (х) ⊃ В (х)), ∀(х) (А (х) ⊃ В(x)), ∃(х) (А (х) & В (х)) и ∃ (х) (А (х) & B (x)). Введение К. дает записывать на формализованном логич. языке выражения естеств. языка, содержащие количест. характеристики к.-л. предметных или предикатных областей. В естеств. языках носителями таких характеристик являются т. н. кванторные слова, к числу к-рых относятся, в частности, количеств. числительные, местоимения "все", "каждый", "нек-рый", глагол "существует", прилагательные "любой", "всякий", "единственный", наречия "бесконечно много" и т.п. Оказывается, что для выражения всех упомянутых кванторных слов в формализ. языках и логич. исчислениях достаточно двух наиболее употребит. К.: К. общности (или в с е о б щ н о с т и), обозначаемого обычно символом ∀(перевернутая буква А – начальная буква англ. слова "all", нем. "alle" и др.), и К. с у щ е с т в о в а н и я, обозначаемого обычно символом ∃ (перевернутая буква E – начальная буква англ. слова "exist", нем. "existieren" и др.); за знаками ∀ и ∃ в обозначении К. следует буква нек-рого алфавита, называемая кванторной переменной, к-рую рассматривают обычно как часть обозначения К.: ∀х, ∀у, ∀F, ∃х, ∃α и т.п. Для К. общности употребляют также обозначения:

для К. существования:

Знак К. ставится перед выражением, к к-рому применяется К. (операцию применения К. часто называют квантификацией); это выражение заключается в скобки (к-рые часто опускают, если это не приводит к двусмысленности). Содержащее К. общности выражение ∀x (А (х)) читается как "Для всех x верно, что А (х)", или "Для каждого x верно А (х)"; содержащее К. существования выражение ∃х (А(х)) читается как "Существует x такой, что А (х)", или "Для нек-рого x верно А(х)". В обоих этих случаях не предполагается, вообще говоря, что выражение A (х) в действительности зависит от переменной x ( может и вообще не содержать никаких переменных, т.е. может обозначать нек-рое высказывание; в этом случае не меняет смысла этого высказывания). Однако осн. назначение К. - высказываний из выражения, зависящего от кванторной переменной, или хотя бы уменьшение числа переменных, от к-рых это выражение, будучи незамкнутой (открытой) формулой (см. Замкнутая формула), зависит. Напр., выражение (y>0&z>0&x=у-z) содержит три переменные (х, y и z) и становится высказыванием (истинным или ложным) при к.-л. опред. замещении этих переменных именами нек-рых предметов из области их значений. Выражение ∃ z(y>0&z>0&x = y-z) зависит уже лишь от двух переменных (х и у), a ∃y∃z (y>0&z>0& &х = у –z) - от одной х. Последняя формула выражает, т.о., нек-рое свойство (одноместный ). Наконец, формула ∃х∃у∃z (y>0&z>0&x=y–z) выражает вполне опред. высказывание.

Др. примеры формул, содержащих К.: 1) ∀х(х>0); 2) ∃х(х>0); 3) ∀х (2+2=5); 4) ∃x (2+2=4); 5) ∀х (х = х)& (х+2=у); 6) ∀х∃у (∀z (x = z⊃x ≠ 0) & (x действие к.-л. К., наз. областью действия этого К. Так, в формуле 6) областями действия К. ∀х и ∃y являются стоящие справа от них части формулы, а область действия К. ∀z - формула (x = z⊃x ≠ 0). Вхождение к.-л. переменной в знак К. или в область действия К., содержащего эту переменную, наз. связанным вхождением переменной в формулу. В остальных случаях вхождение переменной наз. с в о б о д н ы м. Одна и та же может входить в к.-л. формулу в одном месте в связанном виде, а в др. месте – в свободном. Такова, напр., формула 5): первые три (считая слева) вхождения в нее переменной x – связанные, последнее же – свободное. Иногда говорят, что переменная связана в данной формуле, если все ее вхождения в эту формулу – связанные. В математике и логике всякое выражение, содержащее свободную переменную, может рассматриваться (при неформальном подходе) как ее в том обычном смысле этого слова, что оно (выражение) зависит от различных значений этой переменной; придавая этой переменной различные значения (т. е. замещая все ее свободные вхождения именем к.-л. предмета, принадлежащего к области значений этой переменной), мы получаем различные (вообще говоря) значения данного выражения, зависящие от значения переменной, т.е. от подставленной вместо нее константы. Что же касается связанных переменных, то заключающие их выражения в действительности от них не зависят. Напр., выражение ∃х(х = 2у), зависящее от у (входящего в него свободно), эквивалентно выражениям ∃z(z = 2y), ∃u(u = 2у) и т.п. Эта логич. выражений от входящих в них связанных переменных находит в т. н. правиле переименования с в я з а н н ы х п е р е м е н н ы х, постулируемом или выводимом в разл. логич. исчислениях (см. Переменная , Предикатов исчисление).

Изложенное выше истолкование смысла К. относилось к с о д е р ж а т е л ь н ы м логич. теориям. Что же касается исчислений в собств. смысле (т.н. формальных систем), то в них вообще не имеет смысла говорить о "значении" того или иного К., являющегося здесь просто нек-рым символом исчисления. Вопрос о значении (смысле) К. относится целиком к области интерпретации исчисления. В применении к К. можно говорить по крайней мере о трех интерпретациях: классической, интуиционистской и конструктивной, соответствующих различным концепциям существования и всеобщности в логике и математике (см. Интуиционизм , Конструктивная логика). Как в классич., так и в интуиционистском (конструктивном) исчислении предикатов способы вывода в случаях, когда исходные или доказываемые формулы содержат К., описываются одними и теми же т. н. постулатами квантификации, напр. постулатами Бернайса.

К. общности и существования не исчерпываются употребительные в логике виды К. Обширный К. представляют собой т. н. ограниченные К. вида ∀хP(x)А(х) или ∃xQ(x)A(x), в к-рых область изменения кванторной переменной x "ограничена" нек-рым спец. предикатом Р(х) (или Q(x)). Ограниченные К. сводятся к К. общности и существования при помощи след. эквивалентностей: ∀xP(x)A(x) КВАНТОР∀x(P(x) ⊃A(x)) и ∃xQ(x)A(x) КВАНТОР ∃x(Q(x)&A(x)). Часто употребляемый К. единственности ∃!хА(х) ("существует единственное x такое, что А(х)") также выражается через К. общности и существования, напр. так: xA(x) КВАНТОР ∃xA(x)& ∀y∀z(A(y)&A(z)⊃y=z).

Употребительны и др. виды К., не покрываемые понятием ограниченного К. Таковы "числовые" К. вида ∃хnА(х) ("существует в точности n различных x таких, что А(х)"), употребляемый в интуиционистской логике К. "квазисуществования" ∃ хА(х), или ("неверно, что не существует такого х, что А(х)"); с т. зр. классич. логики К. "квазисуществования" ничем не отличается от К. существования, в интуиционистской же логике предложение ∃xA(x), ничего не говорящее о существовании алгоритма для нахождения такого х, что А(х), действительно утверждает лишь "квази" такого x и К. бесконечности ∃x∞A(x) ("существует бесконечно много таких х, что А(х)"). Выражения, содержащие К. бесконечности и числовые К., также могут быть записаны при помощи К. общности и существования. В расширенном исчислении предикатов К. берутся не только по предметным, но и по предикатным переменным, т.е. рассматриваются формулы вида ∃F∀xF(x), ∀Ф∃у(Ф(y)) и т.п.

Лит.: Гильберт Д. и Аккерман В., Основы теоретической логики, пер. с англ., М., 1947, с. 81-108; Тарский А., Введение в логику и методологию дедуктивных наук, пер. с англ., М., 1948, о. 36-42, 100-102, 120-23; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, с. 72-80, 130-38; Чёрч Α., Введение в математическую логику, пер. с англ., т. 1, с. 42–48; Кузнецов А. В., Логические контуры алгоритма, перевода со стандартизованного русского языка на информационно-логический, в сб.: Тезисы докладов на конференции по обработке информации, машинному переводу и автоматическому чтению текста, М., 1961; Mostowski A., On a generalization of quantifiers, "Fundam. math.", 1957, t. 44, No 1, p. 12–36; Hailperin T., A theory of restricted quantification, I–II, "J. Symb. Logic", 1957, v. 22, No 1, p. 19–35, No 2, p. 113–29.

Ю. Гастев. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


Синонимы :

Смотреть что такое "КВАНТОР" в других словарях:

    Сущ., кол во синонимов: 1 оператор (24) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    квантор - — Тематики электросвязь, основные понятия EN quantifier … Справочник технического переводчика

    Квантор общее название для логических операций, ограничивающих область истинности какого либо предиката и создающих выcказывание. Чаще всего упоминают: Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…» … Википедия

    Общее название для логических операций, к рые по предикату Р(х)строят высказывание, характеризующее область истинности предиката Р(х). В математич. логике наиболее употребительны квантор всеобщности и квантор существования Высказывание означает,… … Математическая энциклопедия

    Квантор - (от лат. quantum сколько) символ, используемый для обозначения некоторых операций математической логики, одновременно логическая операция, дающая количественную характеристику области предметов, к которым относится выражение, получаемое в… … Начала современного естествознания

Кроме известных нам логических операций для предикатов вводятся две новые: операция навешивания кванторов существования и общности.


«для всех х » (для любого х , для каждого х ) называется квантором общности и обозначается х.


Высказывание «существует х » (для некоторых х , хотя бы для одного х, найдется такое х ) называется квантором существования и обозначается х.


Высказывание «существует одно и только одно х » (для единственного значения х ) называется квантором единственности : ! х.


Например: «Все кустарники являются растениями». Это высказывание содержит квантор общности («все»). Высказывание «существуют числа, кратные 5 » содержит квантор существования («существуют»).


Для того чтобы получить высказывание из многоместного предиката, надо связать кванторами каждую переменную. Например, если Р(х; у) - двухместный предикат, то (хХ) (уY) Р(х; у) - высказывание.


Если не каждая переменная связывается квантором, то получается не высказывание, а предикат, зависящий от той переменой, которая не связана квантором. Так, если перед предикатом Р(х; у) поставить квантор у, то получим предикат (уY) Р(х; у) , зависящий от переменной х.


Выясним, какие из следующих предложений являются высказываниями, а какие предикатами: а) найдется такое х, что х+ у = 2;


b) для любых х и у имеет место равенство х + у = у + х.


Решение : Выявим логическую структуру данных предложений.


а) Предложение «Найдется такое х, что х + у = 2 » можно записать в виде (хR) х + у = 2. Так как квантором связана только переменная х, то рассматриваемое предложение с двумя переменными является предикатом.


b) Предложение «для любых х и у имеет место х + у = у + х » можно записать в виде: (хR) (уR) х + у = у + х, где обе переменные являются связанными. Следовательно, данное предложение является высказыванием.


Если какое-либо предметное переменное в формуле не связано квантором, то его называют свободным переменным.


Например: (х) ху=ух. Здесь переменное у не связано каким-либо квантором, поэтому оно свободно. От него не зависит истинность данного высказывания.


Кванторы (х) (х ) называются двойственными друг другу.


Одноименные кванторы можно менять местами, что не влияет на истинность высказывания.


Например: (у) (х) х + у = 5. Это утверждение имеет тот же смысл, что и (х) (у) х + у = 5.


Для разноименных кванторов изменение порядка может привести к изменению истинности высказывания.


Например: (х) (у) х<у , т.е. для всякого числа х существует большее число у - истинное высказывание.


Поменяем местами кванторы: (х) (у) x cуществует число у большее любого числа х - ложное высказывание.


В связи с введением кванторов необходимо учесть следующее:


1. Формула логики предикатов не может содержать одно и то же предметное переменное, которое было бы связано в одной части формулы и свободно в другой.


2. Одно и то же переменное не может находиться в области двойственных друг другу кванторов.


Нарушение этих условий называют коллизией переменных .


Как устанавливается значение истинности высказывания с квантором?


Для доказательства утверждения с квантором общности необходимо убедиться в том, что при подстановке каждого из значений х в предикат Р(х) последний обращается в истинное высказывание. Если множество Х конечно, то это можно сделать путем перебора всех случаев; если же множество Х бесконечно, то необходимо провести рассуждения в общем виде.


Высказывание (х) Р(х) ложно, если можно указать такое значение а Х , при котором Р(х) обращается в ложное высказывание Р(а). Поэтому, для опровержения высказывания с квантором общности достаточно привести пример.


Высказывание (х) Р(х) истинно, если можно указать такое значение а Х , при котором Р(х) обращается в истинное высказывание Р(а) . Поэтому, чтобы убедиться в истинности высказывания с квантором существования , достаточно привести пример и таким образом доказать.


Для того чтобы убедиться в ложности высказывания с квантором существования (х) Р(х), необходимо убедиться в ложности каждого Р(х ), Р(х ), …, Р(х ). Если множество Х конечно, то это можно сделать перебором. Если же множество Х бесконечно, то необходимо провести рассуждения в общем виде.


Примеры .


1. Найти значение истинности «средичисел1, 2, 3, 4 найдется простое число».


Решение: Высказывание содержит квантор существования и поэтому может быть представлено в виде дизъюнкции высказываний: «1 - простое число» или «2 - простое число» или «3 - простое число» или «4 - простое число». Для доказательства истинности дизъюнкции достаточно истинности хотя бы одного высказывания, например, «3 - простое число», которое истинно. Следовательно, истинно и исходное высказывание.


2. Докажем, что любой квадрат является прямоугольником.


Решение: Высказывание содержит квантор общности. Поэтому оно может быть представлено в виде конъюнкции: «квадрат - прямоугольник» и «квадрат - прямоугольник» и «квадрат - прямоугольник» и т.д. Так как все эти высказывания истинны, то истинна конъюнкция этих высказываний, следовательно, истинно и исходное предложение.


3. «Любой треугольник равнобедренный». Это ложное высказывание. Чтобы убедиться в этом, достаточно начертить треугольник, не являющийся равнобедренным.а


Для построения отрицания высказывания с кванторами надо:


1) квантор общности заменить квантором существования, а квантор существования - квантором общности;


2) предикат заменить его отрицанием.


Пример. Сформулируем отрицание для следующих высказываний:


а) все элементы множества Z четные; b) некоторые глаголы отвечают на вопрос «что делать?».


Решение: а) Заменим квантор общности квантором существования, а высказывание его отрицанием: некоторые элементы множества Z нечетные.


b) Заменим квантор существования квантором общности, а выражение его отрицанием: все глаголы не отвечают на вопрос «что делать?».

Предика́т (лат. praedicatum - заявленное, упомянутое, сказанное) - любое математическое высказывание, в котором есть, по меньшей мере, одна переменная. Предикат является основным объектом изучения логики первого порядка.

Предикат – выражение с логическими переменными, имеющие смысл при любых допустимых значениях этих пременных.

Выражения: х > 5, x > y – предикаты.

Предика́т (n -местный, или n -арный) - это функция с множеством значений {0,1} (или «ложь» и «истина»), определённая на множестве . Таким образом, каждый набор элементов множества M характеризуется либо как «истинный», либо как «ложный».

Предикат можно связать с математическим отношением: если n -ка принадлежит отношению, то предикат будет возвращать на ней 1. В частности, одноместный предикат определяет отношение принадлежности некоторому множеству.

Предикат - один из элементов логики первого и высших порядков. Начиная с логики второго порядка, в формулах можно ставить кванторы по предикатам.

Предикат называют тождественно-истинным и пишут:

если на любом наборе аргументов он принимает значение 1.

Предикат называют тождественно-ложным и пишут:

если на любом наборе аргументов он принимает значение 0.

Предикат называют выполнимым , если хотя бы на одном наборе аргументов он принимает значение 1.

Так как предикаты принимают только два значения, то к ним применимы все операции булевой алгебры, например: отрицание, импликация, конъюнкция, дизъюнкция и т. д

Ква́нтор - общее название для логических операций, ограничивающих область истинности какого-либо предиката. Чаще всего упоминают:

Квантор всеобщности (обозначение: , читается: «для всех…», «для каждого…» или «каждый…», «любой…», «для любого…»).

Квантор существования (обозначение: , читается: «существует…» или «найдётся…»).

Примеры

Обозначим P (x ) предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):

любое натуральное число кратно 5;

каждое натуральное число кратно 5;

все натуральные числа кратны 5;

следующим образом:

.

Следующие (уже истинные) высказывания используют квантор существования:

существуют натуральные числа, кратные 5;

найдётся натуральное число, кратное 5;

хотя бы одно натуральное число кратно 5.

Их формальная запись:

.Введение в понятие

Пусть на множестве Х простых чисел задан предикат Р(х): «Простое число х - нечётно». Подставим перед этим предикатом слово «любое». Получим ложное высказывание «любое простое число х нечётно» (это высказывание ложно, так как 2 - простое чётное число).

Подставив перед данным предикатом Р(х) слово «существует», получим истинное выказывание «Существует простое число х, являющееся нечётным» (например, х=3).

Таким образом, превратить предикат в высказывание можно, поставив перед предикатом слова: «все», «существует», и др., называемые в логике кванторами.

Кванторы в математической логике

Высказывание означает, что область значений переменной x включена в область истинности предиката P (x ).

(«При всех значениях (x) утверждение верно»).

Высказывание означает, что область истинности предиката P (x ) непуста.

(«Существует (x) при котором утверждение верно»).

Вопрос31 Граф и его элементы. Основные понятия. Инцидентность, кратность, петля, смежность. Типы графов. Маршрут в графе и его длина. Классификация маршрутов. Матрицы смежности ориентированного и неориентированного графов.

В математической теории графов и информатике граф - это совокупность непустого множества вершин и множества пар вершин.

Объекты представляются как вершины, или узлы графа, а связи - как дуги, или рёбра. Для разных областей применения виды графов могут различаться направленностью, ограничениями на количество связей и дополнительными данными о вершинах или рёбрах.

Путём (или цепью) в графе называют конечную последовательность вершин, в которой каждая вершина (кроме последней) соединена со следующей в последовательности вершин ребром.

Ориентированным путём в орграфе называют конечную последовательность вершин v i , для которой все пары (v i ,v i + 1) являются (ориентированными) рёбрами.

Циклом называют путь, в котором первая и последняя вершины совпадают. При этом длиной пути (или цикла) называют число составляющих его рёбер . Заметим, что если вершины u и v являются концами некоторого ребра, то согласно данному определению, последовательность (u ,v ,u ) является циклом. Чтобы избежать таких «вырожденных» случаев, вводят следующие понятия.

Путь (или цикл) называют простым, если ребра в нём не повторяются; элементарным, если он простой и вершины в нём не повторяются. Несложно видеть, что:

Всякий путь, соединяющий две вершины, содержит элементарный путь, соединяющий те же две вершины.

Всякий простой неэлементарный путь содержит элементарный цикл .

Всякий простой цикл, проходящий через некоторую вершину (или ребро), содержит элементарный (под-)цикл, проходящий через ту же вершину (или ребро).

Петля - элементарный цикл.

Граф или неориентированный граф G - это упорядоченная пара G : = (V ,E

V

E это множество пар (в случае неориентированного графа - неупорядоченных) вершин, называемых рёбрами.

V (а значит и E , иначе оно было бы мультимножеством) обычно считаются конечными множествами. Многие хорошие результаты, полученные для конечных графов, неверны (или каким-либо образом отличаются) для бесконечных графов . Это происходит потому, что ряд соображений становится ложным в случае бесконечных множеств.

Вершины и рёбра графа называются также элементами графа, число вершин в графе | V | - порядком, число рёбер | E | - размером графа.

Вершины u и v называются концевыми вершинами (или просто концами) ребра e = {u ,v }. Ребро, в свою очередь, соединяет эти вершины. Две концевые вершины одного и того же ребра называются соседними.

Два ребра называются смежными, если они имеют общую концевую вершину.

Два ребра называются кратными, если множества их концевых вершин совпадают.

Ребро называется петлёй, если его концы совпадают, то есть e = {v ,v }.

Степенью deg V вершины V называют количество инцидентных ей рёбер(при этом петли считают дважды).

Вершина называется изолированной, если она не является концом ни для одного ребра; висячей (или листом), если она является концом ровно одного ребра.

Ориентированный граф (сокращённо орграф) G - это упорядоченная пара G : = (V ,A ), для которой выполнены следующие условия:

V это непустое множество вершин или узлов,

A это множество (упорядоченных) пар различных вершин, называемых дугами или ориентированными рёбрами.

Дуга - это упорядоченная пара вершин (v, w) , где вершину v называют началом, а w - концом дуги. Можно сказать, что дуга ведёт от вершины v к вершине w .

Смешанный граф

Смешанный граф G - это граф, в котором некоторые рёбра могут быть ориентированными, а некоторые - неориентированными. Записывается упорядоченной тройкой G : = (V ,E ,A ), где V , E и A определены так же, как выше.

Ориентированный и неориентированный графы являются частными случаями смешанного.

Изоморфные графы(?)

Граф G называется изоморфным графу H , если существует биекция f из множества вершин графа G в множество вершин графа H , обладающая следующим свойством: если в графе G есть ребро из вершины A в вершину B , то в графе H f (A ) в вершину f (B ) и наоборот - если в графе H есть ребро из вершины A в вершину B , то в графе G должно быть ребро из вершины f − 1 (A ) в вершину f − 1 (B ). В случае ориентированного графа эта биекция также должна сохранять ориентацию ребра. В случае взвешенного графа биекция также должна сохранять вес ребра.

Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n ) - это квадратная матрица A размера n , в которой значение элемента a ij равно числу рёбер из i -й вершины графа в j -ю вершину.

Иногда, особенно в случае неориентированного графа, петля (ребро из i -й вершины в саму себя) считается за два ребра, то есть значение диагонального элемента a ii в этом случае равно удвоенному числу петель вокруг i -й вершины.

Матрица смежности простого графа (не содержащего петель и кратных ребер) является бинарной матрицей и содержит нули на главной диагонали.

Вопрос32 Функция. Способы задания. Классификация функций. Основные элементарные функции и их графики. Композиция функций. Элементарные функции.

Функция - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция это «закон», по которому каждому элементу одного множества (называемому областью определения ) ставится в соответствие некоторый элемент другого множества (называемого областью значений ).

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной x однозначно определяет значение выражения x 2 , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Способы задания функции

Аналитический способ

Функция математический объект представляет собой бинарное отношение, удовлетворяющее определенным условиям. Функцию можно задать непосредственно как множество упорядоченных пар, например: есть функция . Однако, этот способ совершенно непригоден для функций на бесконечных множествах (каковыми являются привычные вещественные функции: степенная, линейная, показательная, логарифмическая и т. п.).

Для задания функции пользуются выражением: . При этом, x есть переменная, пробегающая область определения функции, а y - область значений. Эта запись говорит о наличии функциональной зависимости между элементами множеств. х и y могут пробегать любые множества объектов любой природы. Это могут быть числа, векторы, матрицы, яблоки, цвета радуги. Поясним на примере:

Пусть имеется множество яблоко, самолет, груша, стул и множество человек, паровоз, квадрат . Зададим функцию f следующим образом: (яблоко,человек), (самолет,паровоз), (груша,квадрат), (стул,человек) . Если ввести переменную x, пробегающую множество и переменную y, пробегающую множество , указанную функцию можно задать аналитически, как: .

Аналогично можно задавать числовые функции. Например: где х пробегает множество вещественных чисел задает некоторую функцию f. Важно понимать, что само выражение не является функцией. Функция как объект представляет собой множество (упорядоченных пар). А данное выражение как объект есть равенство двух переменных. Оно задает функцию, но не является ею.

Однако, во многих разделах математики, можно обозначать через f(x) как саму функцию, так и аналитическое выражение, ее задающее. Это синтаксическое соглашение является крайне удобным и оправданным.

Графический способ

Числовые функции можно также задавать с помощью графика. Пусть - вещественная функция n переменных.

Рассмотрим некоторое (n+1)-мерное линейное пространство над полем вещественных чисел (так как функция вещественная). Выберем в этом пространстве любой базис (). Каждой точке функции сопоставим вектор: . Таким образом, мы будем иметь множество векторов линейного пространства, соответствующих точкам данной функции по указанному правилу. Точки соответствующего аффинного пространства будут образовывать некоторую поверхность.

Если в качестве линейного пространства взять евклидово пространство свободных геометрических векторов (направленных отрезков), а число аргументов функции f не превосходит 2, указанное множество точек можно изобразить наглядно в виде чертежа (графика). Если сверх того исходный базис взять ортонормированным, получим "школьное" определение графика функции.

Для функций 3 аргументов и более такое представление не применимо ввиду отсутствия у человека геометрической интуиции многомерных пространств.

Однако, и для таких функций можно придумать наглядное полугеометрическое представление (например каждому значению четвертой координаты точки сопоставить некоторый цвет на графике)

Пропорциональные величины. Если переменные y и x прямо пропорциональны

y = k x ,

где k - постоянная величина ( коэффициент пропорциональности ).

График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол , тангенс которого равен k : tan = k (рис.8). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом . На рис.8 показаны три графика для k = 1/3, k = 1 и k = 3 .

Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:

A x + B y = C ,

где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия . Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A , B , C показаны на рис.9.

Обратная пропорциональность. Если переменные y и x обратно пропорциональны , то функциональная зависимость между ними выражается уравнением:

y = k / x ,

где k - постоянная величина.

График обратной пропорциональности – гипербола (рис.10). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью (о конических сечениях см. раздел «Конус» в главе «Стереометрия»). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k , что следует из уравнения гиперболы: xy = k .

Основные характеристики и свойства гиперболы:

x 0, область значений: y 0 ;

Функция монотонная (убывающая) при x < 0и при x > 0, но не

монотонная в целом из-за точки разрыва x = 0);

Функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая;

- нулей функция не имеет.

Квадратичная функция. Это функция: y = ax 2 + bx + c , где a, b, c - постоянные, a b = c = 0 и y = ax 2 . График этой функции квадратная парабола - OY , которая называется осью параболы .Точка O вершиной параболы .

Квадратичная функция. Это функция: y = ax 2 + bx + c , где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2 . График этой функции квадратная парабола - кривая, проходящая через начало координат (рис.11). Каждая парабола имеет ось симметрии OY , которая называется осью параболы .Точка O пересечения параболы с её осью называется вершиной параболы .

График функции y = ax 2 + bx + c - тоже квадратная парабола того же вида, что и y = ax 2 , но её вершина лежит не в начале координат, а в точке с координатами:

Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента a при x 2 и дискриминанта D : D = b 2 4ac . Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.

Основные характеристики и свойства квадратной параболы:

Область определения функции:  < x + (т.e. x R ), а область

значений:(ответьте, пожалуйста, на этот вопрос сами!);

Функция в целом не монотонна, но справа или слева от вершины

ведёт себя, как монотонная;

Функция неограниченная, всюду непрерывная, чётная при b = c = 0,

и непериодическая;

- при D < 0 не имеет нулей.

Показательная функция. Функция y = a x , где a - положительное постоянное число, называется показательной функцией .Аргумент x принимает любые действительные значения ; в качестве значений функции рассматриваются только положительные числа , так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = 3, y = 3 i и y = 3 i (проверьте, пожалуйста!). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку (0, 1). При a = 1 мы имеем график прямой линии, параллельной оси Х , т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает. Основные характеристики и свойства показательной функции:

Область определения функции:  < x + (т.e. x R );

область значений: y > 0 ;

Функция монотонна: возрастает при a > 1 и убывает при 0 < a < 1;

- нулей функция не имеет.

Логарифмическая функция. Функция y = log a x , где a – постоянное положительное число,не равное 1, называется логарифмической . Эта функция является обратной к показательной функции; её график (рис.18) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла.

Основные характеристики и свойства логарифмической функции:

Область определения функции: x > 0,а область значений:  < y +

(т.e. y R );

Это монотонная функция: она возрастает при a > 1 и убывает при 0 < a < 1;

Функция неограниченная, всюду непрерывная, непериодическая;

У функции есть один ноль: x = 1.

Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов.Тогда функция y = sin x представляется графиком (рис.19). Эта кривая называется синусоидой .

График функции y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на 2

Из этих графиков очевидны характеристики и свойства этих функций:

Область определения:  < x + область значений: 1 y +1;

Эти функции периодические: их период 2 ;

Функции ограниченные (| y | , всюду непрерывные, не монотонные, но

имеющие так называемые интервалы монотонности , внутри которых они

ведут себя, как монотонные функции (см. графики рис.19 и рис.20);

Функции имеют бесчисленное множество нулей (подробнее см. раздел

«Тригонометрические уравнения»).

Графики функций y = tan x и y = cot x показаны соответственно на рис.21 и рис.22

Из графиков видно, что эти функции: периодические (их период ,

неограниченные, в целом не монотонные, но имеют интервалы монотонности

(какие?), разрывные (какие точки разрыва имеют эти функции?). Область

определения и область значений этих функций:

Функции y = Arcsin x (рис.23) и y = Arccos x (рис.24)многозначные, неограниченные; их область определения и область значений соответственно: 1 x +1 и  < y + . Поскольку эти функции многозначные, не

рассматриваемые в элементарной математике, в качестве обратных тригонометрических функций рассматриваются их главные значения: y = arcsin x и y = arccos x ; их графики выделены на рис.23 и рис.24 жирными линиями.

Функции y = arcsin x и y = arccos x обладают следующими характеристиками и свойствами:

У обеих функций одна и та же область определения: 1 x +1 ;

их области значений:  /2 y /2 для y = arcsin x и 0 y для y = arccos x ;

(y = arcsin x – возрастающая функция; y = arccos x – убывающая);

Каждая функция имеет по одному нулю (x = 0 у функции y = arcsin x и

x = 1 у функции y = arccos x ).

Функции y = Arctan x (рис.25) и y = Arccot x (рис.26)- многозначные, неограниченные функции; их область определения:  x + . Их главные значения y = arctan x и y = arccot x рассматриваются в качестве обратных тригонометрических функций; их графики выделены на рис.25 и рис.26 жирными ветвями.

Функции y = arctan x и y = arccot x имеют следующие характеристики и свойства:

У обеих функций одна и та же область определения:  x + ;

их области значений:  /2< y < /2 для y = arctan x и 0 < y < для y = arccos x ;

Функции ограниченные, непериодические, непрерывные и монотонные

(y = arctan x – возрастающая функция; y = arccot x – убывающая);

Только функция y = arctan x имеет единственный ноль (x = 0);

функция y = arccot x нулей не имеет.

Композиция функций

Если даны два отображения и , где , то имеет смысл "сквозное отображение" из в , заданное формулой , , которое называется композицией функций и и обозначается .

Рис.1.30.Сквозное отображение из в