Целостность системы означает что свойства системы. Понятие, основные виды и свойства систем

Существует по меньшей мере несколько десятков различных определений понятия «система», используемых в зависи­мости от контекста, области знаний и целей исследования. Основной фактор, влияющий на различие в определениях, состоит в том, что в понятии «система» есть двойственность: с одной сторо­ны, оно используется для обозначения объективно существующих феноменов, а с другой стороны - как метод изучения и представле­ния феноменов, то есть как субъективная модель реальности.

В связи с этой двойственностью авторы определений различа­ют по меньшей мере два аспекта: как отличить системный объект от несистемного и как построить систему путём выделения её из окру­жающей среды. На основе первого подхода даётся дескриптивное (описательное) определение системы, на основе второго - конструктивное, иногда они сочетаются. Подходы к определению системы также предлагают делить на онтологический (соответствует дескриптивному), гносеологический и методологический (последние два соот­ветствуют конструктивному).

В целом, система - множество элементов, находящихся в отно­шениях и связях друг с другом, которое образует определённую це­лостность, единство.

Многообразие систем довольно велико, и существенную помощь при их изучении оказывает классификация. Важно понять, что клас­сификация - это только модель реальности, поэтому к ней надо так и относиться, не требуя от нее абсолютной полноты. Еще необхо­димо подчеркнуть относительность любых классификаций. Сама классификация выступает в качестве инструмента системного ана­лиза. С ее помощью структурируется объект (проблема) исследова­ния, а построенная классификация является моделью этого объекта. Полной классификации систем в настоящее время нет, более того, не выработаны окончательно ее принципы. Разные авторы предла­гают разные принципы классификации, а сходным по сути - дают разные названия.

1) В зависимости от происхождения системы делятся на естествен­ные и искусственные (создаваемые, антропогенные).



Естественные системы - это системы, объективно существующие в действительности, в живой и неживой природе и обществе. Эти си­стемы возникли в природе без участия человека.

Искусственные си­стемы - это системы, созданные человеком. Кроме того, можно го­ворить о третьем классе систем - смешанных системах, куда относятся эргономические (машина - человек-оператор), автоматизирован­ные, биотехнические, организационные и другие системы.

2) Классификация по объективности существования. Все системы можно разбить на две большие группы: реальные (материальные или физические) и абстрактные (символические) системы.

Реальные системы состоят из изделий, оборудования, машин и вообще из естественных и искусственных объектов.

Абстрактные системы по сути являются моделями реальных объектов - это языки, системы счисления, идеи, планы, гипотезы и понятия, алгоритмы и компьютерные программы, математические модели, системы наук.

Иногда выделяют идеальные или концептуальные системы - си­стемы, которые выражают принципиальную идею или образцовую действительность - образцовый вариант имеющейся или проекти­руемой системы.

Также можно выделить виртуальные системы - не существующие в действительности модельные или мыслительные представления ре­альных объектов, явлений, процессов (могут быть как идеальными, так и реальными системами).

3) Действующие системы. Такие системы способны совершать операции, работы, процедуры, обеспечивать заданное течение тех­нологических процессов, действуя по программам, задаваемым че­ловеком. В действующих системах можно выделить следующие си­стемы: технические, эргатические, технологические, экономические, социальные, организационные и системы управления.

Технические системы представляют собой материальные си­стемы, которые решают задачи по программам, составленным человеком; сам человек при этом не начнется элементом таких систем. Если в системе присутствует человек, выполняющий определенные функции субъекта, то говорят об эргатической системе. Частным случаем эргатической системы будет человеко-машинная система - система, в которой человек-оператор или группа операторов взаи­модействует с техническим устройством в процессе производства ма­териальных ценностей, управления, обработки информации и т. д.

Технологическая формальная система - это совокупность опера­ций (процессов) в достижении некоторых целей (решений некото­рых задач). Структура такой системы определяется набором методов, методик, рецептов, регламентов, правит и норм.

Технологическая материальная система - это совокупность реаль­ных приборов, устройств, инструментов и материалов (техническое, обеспечение системы), реализующих операции (процессное обеспе­чение системы) и предопределяющих их качество и длительность.

Экономическая система - это система отношений (процессов), скла­дывающихся в экономике, это совокупность экономических отноше­ний, возникающих в процессе производства, распределения, обмена и потребления экономических продуктов и регламентируемых совокуп­ностью соответствующих принципов, правил и законодательных норм.

Социальная система - это совокупность мероприятий, направлен­ных на социальное развитие жизни людей. К таким мероприятиям относятся: улучшение социально-экономических и производствен­ных условий труда, усиление его творческого характера, улучшение жизни работников, улучшение жилищных условий и т. п.

Организационная система - это совокупность элементов, обеспе­чивающих координацию действий, нормальное функционирование и развитие основных функциональных элементов объекта. Элемен­ты такой системы представляют собой органы управления, облада­ющие правом принимать управленческие решения - это руководи­тели подразделения или даже отдельные организации.

Систему, в которой реализуется функция управления, называют системой управления. Система управления содержит два главных эле­мента: управляемую подсистему (объект управления) и управляющую подсистему (осуществляющую функцию управления). Применитель­но к техническим системам управляющую подсистему называют си­стемой регулирования, а к социально-экономическим - системой ор­ганизационного управления.

4) Классификация по степени централизованности. Централизо­ванной системой называется система, в которой некоторый элемент играет главную, доминирующую роль в функционировании систе­мы. Такой главный элемент называется ведущей частью системы или ее центром. При этом небольшие изменения ведущей части вызы­вают значительные изменения всей системы: как желательные, так и нежелательные. К недостаткам централизованной системы мож­но отнести низкую скорость адаптации (приспособления к изменя­ющимся условиям окружающей среды), а также сложность управле­ния из-за огромного потока информации, подлежащей переработке в центральной части систем.

Децентрализованная система - это система, в которой нет глав­ного элемента. Важнейшие подсистемы в такой системе имеют при­близительно одинаковую ценность и построены не вокруг централь­ной подсистемы, а соединены между собой последовательно или параллельно.

5) Классификация по размерности. Система, имеющая один вход и один выход, называется одномерной. Если входов или выходов боль­ше одного - многомерной. Нужно понимать условность одномерно­сти системы - в реальности любой объект имеет бесчисленное чис­ло входов и выходов.

6) Классификация по однородности и разнообразию структурных це­ментов. Системы бывают гомогенные, или однородные, и гетероген­ные, или разнородные, а также смешанного типа.

В гомогенных системах структурные элементы системы однород­ны, то есть обладают одинаковыми свойствами. В связи с этим в го­могенных системах элементы взаимозаменяемы.

Гетерогенные системы состоят из разнородных элементов, не об­ладающих свойством взаимозаменяемости.

7) Классификации по траектории развития. Система называется линейной, если она описывается линейными уравнениями (алгебра­ическими, дифференциальными, интегральными и т. п.), в против­ном случае - нелинейной.

Для линейных систем справедлив принцип суперпозиции: реак­ция системы на любую комбинацию внешних воздействий равна сум­ме реакций на каждое из этих воздействий, поданных на систему по­рознь. В связи с этим для упрощения анализа систем довольно часто применяют процедуру линеаризации, при которой нелинейную си­стему" описывают приближенно линейными уравнениями в некото­рой (рабочей) области изменения входных переменных. Однако не всякую нелинейную систему можно линеаризировать, в частности, нельзя линеаризировать дискретные системы.

Дискретная система - это система, содержащая хотя бы один эле­мент дискретного действия. Дискретный элемент - это элемент, вы­ходная величина которого изменяется дискретно, то есть скачками, даже при плавном изменении входных величин.

Все остальные системы относятся к системам непрерывного действия. Система непрерывного действия (непрерывная система) состоит только из элементов непрерывного действия, то есть элементов, выходы ко­торых изменяются плавно при плавном изменении входных величин.

8) В зависимости от способности системы ставить себе цель раз­личают каузальные и целенаправленные (целеустремленные, актив­ные) системы.

Каузальные системы - это системы, которым цель внутренне не присуща. Если такая система и имеет целевую функцию (например, автопилот), то эта функция задана извне пользователем.

Целенаправленные системы - это системы, способные к выбору своего поведения в зависимости от внутренне присущей цели. В це­ленаправленных системах цель формируется внутри системы.

Элемент целенаправленности всегда присутствует в системе, включающей в себя людей (или еще шире живые существа). Вопрос чаще всего состоит в степени влияния этой целенаправленности на функционирование объекта. Если мы имеем дело с ручным произ­водством, то влияние так называемого человеческого фактора очень большое. Отдельный человек, группа людей или весь коллектив спо­собны поставить цель своей деятельности, отличную от цели ком­пании.

9) Классификация систем по сложности. Существует ряд подхо­дов к разделению систем по сложности, и, к сожалению, нет еди­ного определения этому понятию, нет и четкой границы, отделяю­щей простые системы от сложных. Разными авторами предлагались различные классификации сложных систем. Например, признаком простой системы считают сравнительно небольшой объем инфор­мации, требуемый для ее успешного управления. Системы, в кото­рых не хватает информации для эффективного управления, счита­ют сложными.

Условно можно выделить два вида сложности: структурную и функ­циональную.

Структурная сложность. Ст. Вир предлагает делить системы на простые, сложные и очень сложные. Простые - это наименее слож­ные системы. Сложные - это системы, отличающиеся разветвленной структурой и большим разнообразием, внутренних связей.

Очень сложная система - это сложная система, которую подроб­но описать нельзя. Несомненно, что эти деления довольно условны и между ними трудно провести границу.

Функциональная сложность. Дня количественной оценки функци­ональной сложности можно использовать алгоритмический подход, например количество арифметико-логических операций, требуемых для реализации функции системы преобразования входных значений в выходные, или объем ресурсов (время счета или используемая па­мять), используемых в системе при решении некоторого класса задач.

Кроме того, выделяют такой тип сложности, как динамическая сложность. Она возникает тогда, когда меняются связи между эле­ментами. Попытку дать исчерпывающее описание таким системам можно сравнить с поиском выхода из лабиринта, который полно­стью изменяет свою конфигурацию, как только вы меняете направ­ление движения.

10) Классификация по степени детерминированности. Если входы объекта однозначно определяют его выходы, то есть его поведение можно однозначно предсказать (с вероятностью 1), то объект явля­ется детерминированным, в противном случае - недетерминирован­ным (стохастическим). Детерминированность характерна для менее сложных систем; стохастические системы сложнее детерминирован­ных, поскольку их более сложно описывать и исследовать.

11) Классификация систем по степени организованности. Если ис­следователю удается определить элементы системы и их взаимосвязи между собой и с целями системы и вид детерминированных (анали­тических или графических) зависимостей, то возможно представле­ние объекта в виде хорошо организованной системы.

Если не ставится задача определить все учитываемые компоненты и их связи с целями системы, то объект представляется в виде плохо организованной (или диффузной) системы. Ял я описания свойств та­ких систем можно рассматривать два подхода: выборочный и макро- параметрический.

Класс самоорганизующихся, или развивающихся, систем характе­ризуется рядом признаков, особенностей, которые, как правило, об­условлены наличием в системе активных элементов, делающих си­стему целенаправленной.

12) Классификация систем по степени открытости. Открытые си­стемы постоянно обмениваются веществом, энергией или информа­цией со средой. Система закрыта (замкнута), если в неё не поступа­ют и из неё не выделяются вещество, энергия или информация.

К основным свойствам систем относятся:

1. Целостность, то есть система существует как целое, которое за­тем можно разбить на части или элементы.

2. Структурность - описание системы через постановленные её структуры. Структура - это совокупность элементов и связи меж­ду ними определяющих внутреннее строение объекта, как целост­ной системы.

3. Взаимосвязь элементов, то есть элементы структуры находятся в составе системы непроизвольно.

4. Бесконечность - свойство системы, под которой понимает­ся невозможность его полного познания и представление конечным способом описания.

5. Иерархичность, то есть элементы системы сами могут являть­ся сложной системой.

6. Множественность описания - одна и та же система может быть рассмотрена с различных позиций способов и методов её описания.

7. Синергичность, эмерджентность, системный эффект - появ­ление у системы свойств, не присущих элементам системы; прин­ципиальная несводимость свойств системы к сумме свойств состав­ляющих её компонентов (неаддитивность). Возможности системы превосходят сумму возможностей составляющих её частей; общая производительность или функциональность системы лучше, чем у простой суммы элементов.

Система обладает рядом свойств.

Свойства системы - это качества элементов, дающие возможность количественного описания системы, выражения ее в определенных величинах.

Базовые свойства систем сводятся к следующему:

  • · система стремится сохранить свою структуру (это свойство основано на объективном законе организации - законе самосохранения);
  • · система имеет потребность в управлении (существует набор потребностей человека, животного, общества, стада животных и большого социума);
  • · в системе формируется сложная зависимость от свойств входящих в нее элементов и подсистем (система может обладать свойствами, не присущими ее элементам, и может не иметь свойств своих элементов). Например, при коллективной работе у людей может возникнуть идея, которая бы не пришла в голову при индивидуальной работе; коллектив, созданный педагогом Макаренко из беспризорных детей, не воспринял воровства, матерщины, беспорядка, свойственных почти всем его членам.

Помимо перечисленных свойств большие системы обладают свойствами эмерджентности, синергичности и мультипликативности.

Свойство эмерджентности - это 1) одно из первично-фундаментальных свойств больших систем, означающее, что целевые функции отдельных подсистем, как правило, не совпадают с целевой функцией самой БС; 2) появление качественно новых свойств у организованной системы, отсутствующих у ее элементов и не характерных для них.

Свойство синергичности - одно из первично-фундаментальных свойств больших систем, означающее однонаправленность действий в системе, которое приводит к усилению (умножению) конечного результата.

Свойство мультипликативности - одно из первично-фундаментальных свойств больших систем, означающее, что эффекты, как положительные, так и отрицательные, в БС обладают свойством умножения.

Каждая система имеет входное воздействие, систему обработки, конечные результаты и обратную связь

Рисунок 1.- Схема функционирования системы

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика -- то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge -- возникать, появляться) .

  • 1. Эмерджентность -- степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  • 2. Эмерджентность -- свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность -- принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность -- интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность -- сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность -- это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность -- это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения -- действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития, под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае -- системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития -- это блуждание в потемках.

Поведение системы определяется характером реакции на внешние воздействия. Фундаментальным свойством систем является устойчивость, т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Надежность -- свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть -- как активное подавление вредных качеств.

Адаптируемость -- свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации. Можно выделить два аспекта взаимодействия:

  • · во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • · среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Всего выделяют 30 свойств систем, которые предлагается подразделять на четыре группы:

  • 1) свойства, характеризующие сущность и сложность систем;
  • 2)свойства, характеризующие связь системы с внешней средой;
  • 3)свойства, характеризующие методологию целеполагания системы;
  • 4)свойства, характеризующие параметры функционирования и развития системы.

Под системой же следует понимать определенную целостность, состоящую из взаимозависимых частей, каждая из которых вносит свой вклад в функционирование целого. Следовательно, главной задачей руководителя является необходимость видеть организацию в целом, в единстве составляющих ее частей, которые прямо и косвенно взаимодействуют друг с другом, и с внешним миром. Он должен учитывать, что любое, даже частное управленческое воздействие на какой-либо компонент организации обязательно приводит к многочисленным, а часто непредсказуемым последствиям. Их-то и необходимо учитывать в управлении; для этого надо знать, каковы те основные законы, по которым строятся системы.

Исследование сущности управления следует начинать, как отмечает В. А. Елисеев, с определения его компонентов и взаимосвязей между ними и внешней средой, различия управления функционированием системы в заданных условиях и управления развитием системы. Цель управления в первом случае -- ликвидация внутренних и внешних возмущений без изменения выходных параметров системы, а во втором -- перемена входных и выходных параметров в соответствии с изменениями внешней среды.

Регулирование системы обеспечивает такую ее деятельность, при которой выравнивается состояние выхода системы по заданной норме. Следовательно, главная задача сводится к установлению заданного состояния функционирования системы, предусмотренного планированием как упреждающим управлением. Сложность управления зависит, прежде всего, от количества изменений в системе и ее окружения. Все изменения имеют определенные закономерности или носят случайный характер.

В. А. Елисеев сущность управления рассматривает как совокупность следующих понятий: организация управления, процесс управления и информация.

Об организации управления можно говорить только в том случае, когда выделены цель и объект управления. Поэтому эффектность организации управления в значительной степени зависит от четкости формулирования целей управления.

Существовавшие до этого подхода школы делали главный акцент на прогрессе управления как таковом. Системный же подход показал, что не меньшей, если не большей, сложностью обладает сам объект управления. Не только управление, но и то, что управляется, имеет свою логику, свои законы и они системны по своей природе. Следовательно, эффективное управление обязательно должно учитывать и их, а для этого -- знать и уметь их использовать.

управление менеджмент хозяйственный

Характеристика - то, что отражает некоторое свойство системы.

Из определения "системы" следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают.

Это свойство эмерджентности (от анг. emerge - возникать, появляться).

Эмерджентность - свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность - интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность - сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения - действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития, под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов "развитие" и "движение" позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае - системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности.

Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития - это блуждание в потемках.

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость, т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность - свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть - как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость - свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации. Можно выделить два аспекта взаимодействия:

Во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);

Среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антагонистическую по отношению к исследуемой системе.3. Характеристики строения систем

Система может быть представлена простым перечислением элементов, или "чёрным ящиком" (моделью "вход - выход"). Однако чаще всего при исследовании объекта такое представление недостаточно, так как требуется выяснить, что собой представляет объект, что в нём обеспечивает выполнение поставленной цели, получение требуемых результатов. В этих случаях систему отображают путём расчленения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер, и вводят понятие структуры.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может изменяться.

Структуры могут быть представлены в матричной форме, в форме теоретико-множественных описаний, с помощью языка топологии, алгебры и других средств моделирования систем.

Структуры, особенно иерархические, могут помочь в раскрытии неопределённости сложных систем. Иными словами, структурные представления систем могут являться средством их исследования. В связи с этим полезно выделить и исследовать определённые виды (классы) структур.

В соответствии с задачами системного исследования можно выделить два типа определения системы - дескриптивное и конструктивное.

Дескриптивное (описательное) - определение системы через ее свойства, через внешние проявления. Например, ключ - это предмет, легко открывающий замок.

Конструктивное определение - описание через элементы системы, связанные с основным системообразующим фактором - с функцией. В конструктивном плане система рассматривается как единство входа, выхода и процессора (преобразователя), предназначенных для реализации определенной функции.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика – то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг.emerge – возникать, появляться).

  • 1. Эмерджентность – степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  • 2. Эмерджентность – свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность – принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность – интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность – сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой из­менение формы (структуры),но и наоборот .

Важным свойством системы является наличие поведения – действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определённые взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза ). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Ещё одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основопола­гающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае - системы. Наивно представлять себе разви­тие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономер­ности. Эти закономерности по природе своей действуют объектив­но, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития - это блуждание в потемках.

«Кто не знает, в какую гавань он плывет,
для того нет попутного ветра»

Сенека

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От неё зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надёжность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надёжность – свойство сохранения структуры систем, несмотря на гибель отдельных её элементов с помощью их замены или дублирования, а живучесть – как активное подавление вредных качеств. Таким образом, надёжность является более пассивной формой, чем живучесть.

Адаптируемость – свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • - во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • - среда обычно является источником неопределённости для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

В силу того, что системный анализ направлен на решение любых проблем понятие системы должно быть очень общим, применимым к любым ситуациям. Выход видится в том, чтобы обозначить, перечислить, описать такие черты, свойства, особенности систем, которые, во-первых, присущи всем системам без исключения, независимо от их искусственного или естественного происхождения, материального или идеального воплощения; а во-вторых, из множества свойств были бы отобраны и включены в список по признаку их необходимости для построения и использования технологии системного анализа. Полученный список свойств можно назвать дескриптивным (описательным) определением системы.

Необходимы нам свойства системы естественно распадаются на три группы, по четыре свойства в каждой.

Статические свойства системы

Статическими свойствами назовем особенности конкретного состояния системы. Это как бы то, что можно разглядеть на мгновенной фотографии системы, то, чем обладает система в любой, но фиксированный момент времени.

Динамические свойства системы

Если рассмотреть состояние системы в другой, отличный от первого, момент времени, то мы вновь обнаружим все четыре статических свойства. Но если наложить эти две "фотографии" друг на друга, то обнаружится, что они отличаются в деталях: за время между двумя моментами наблюдения произошли какие-то изменения в системе и ее окружении. Такие изменения могут быть важными при работе с системой и, следовательно, должны быть отображены в описаниях системы и учтены в работе с нею. Особенности изменений со временем внутри системы и вне ее и именуются динамическими свойствами систем. Если статические свойства - это то, что можно увидеть на фотографии системы, то динамические-то, что обнаружится при просмотре кинофильма про систему. О любых изменениях мы имеем возможность говорить в терминах перемен в статических моделях системы. В этой связи различаются четыре динамических свойства.

Синтетические свойства системы

Этот термин обозначает обобщающие, собирательные, интегральные свойства, учитывающие сказанное раньше, но делающие упор на взаимодействия системы со средой, на целостность в самом общем понимании.

Из бесконечного числа свойств систем выделено двенадцать присущих всем системам. Они выделены по признаку их необходимости и достаточности для обоснования, построения и доступного изложения технологии прикладного системного анализа.

Но очень важно помнить, что каждая система отличается от всех других. Это проявляется, прежде всего, в том, что каждое из двенадцати общесистемных свойств в данной системе воплощается в индивидуальной форме, специфической для этой системы. Кроме того, помимо указанных общесистемных закономерностей, каждая система обладает и другими, присущими только ей свойствами.

Прикладной системный анализ нацелен на решение конкретной проблемы. Это выражается в том, что с помощью общесистемной методологии он технологически направлен на обнаружение и использование индивидуальных, часто уникальных особенностей данной проблемной ситуации.

Для облегчения такой работы можно употребить некоторые классификации систем , фиксирующие тот факт, что для разных систем следует использовать разные модели, разную технику, разные теории. Например, Р. Акофф и Д. Гарайедаги предложили различать системы по соотношению объективных и субъективных целей у частей целого: системы технические, человеко-машинные, социальные, экологические. Другая полезная классификация, по степени познанности систем и формализованности моделей, предложена У. Чеклендом: "жесткие" и "мягкие" системы и, соответственно, "жесткая" и "мягкая" методологии, обсужденные в гл. 1.

Итак, можно сказать, что системное видение мира состоит в том, чтобы, понимая его всеобщую системность, приступить к рассмотрению конкретной системы, уделяя основное внимание ее индивидуальным особенностям. Классики системного анализа сформулировали этот принцип афористически: "Думай глобально, действуй локально".

Тарасенко Ф. П. Прикладной системный анализ (наука и искусство решения проблем): Учебник. - Томск; Издательство Томского университета, 2004. ISBN 5-7511-1838-3. Фрагмент