Биологическая система. Биосистемы Элементом какой биосистемы является сообщество

Эволюция живого привела к формированию существующего ныне на планете биоразнообразия. За всю историю Земли на ней обитало от одного до двух миллиардов видов живых существ, большая часть которых вымерла. Однако и современное многообразие биологических видов потрясающе велико. Ученым известно не менее 1,4 млн. видов, обитающих на планете, в том числе не менее 4000 видов млекопитающиих, 9000 – птиц, 19000 рыб, 750000 насекомых, 210000 цветковых растений. Учитывая еще не описанные виды, общее число видов оценивается в диапазоне 5-30 млн. (Грант, 1991). «Полагают, что сейчас на нашей планете обитает свыше миллиона видов животных, 0,5 млн. вида растений, до 10 млн. микроорганизмов, причем эти цифры занижены» (Медников, 1994).

Такие различные организмы, как крошечные бактерии и гигантские синие киты, одноклеточные корненожки и человекообразные обезьяны, цветковые растения и насекомые – все входят в состав единого планетарного «тела биоса». Подобно целостному организму, биос зависит в своем существовании от гармоничного, слаженного функционирования всех “систем органов”. В роли “органов” и их “систем” выступают разнообразные группы живых существ. Описание этого био-разнообразия в различных его аспектах и гранях весьма важно как с точки зрения охраныэтого разнообразия, так и в концептуальном плане. Для биополитики особенно существенное значение имеет приложе­ние принципа, аналогичного “биоразнообразию”, к политическим системам с их плюрализмом, взаимодополни­тель­ностью и взаимозависимостью. Понятие “биоразнообразие” включает несколько различных аспектов.

3.3.1. Разнообразие видов живого с точки зрения систематики. Виды группируются в роды, роды – в семейства и т.д., пока мы не доходим до самых крупных из основных подразделений многообразия живого – империй, которые подразделяются на царства.. Наиболее фундаментальное различие современные систематики усматривают между прокариотами («доядерными») иэукариотами («истинноядерными»). Это и есть две империи: к империи прокариот (Prokaryota ) относятся микроскопические существа – бактерии; к империи эукариот (Eukaryota ) -- все остальные формы жизни – простейшие, грибы, растения, животные (включая человека).



«Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ - единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость… Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной.» (Гусев, Минеева, 2003). В пределах каждой империи различные авторы выделяют различное количество царств. Так в классификации Уиттекера (Whittaker, 1969) империя эукариот дробится на 4 царства – протисты, или простейшие, грибы, растения и животные, а прокариоты (синоним – монеры) считаются единым царством. В нижеследующей классификации от схемы Уиттекера допущено единственное отступление – прокариоты поделены на 2 царства – эубактерий и архей (архебактерий), что соответствует фундаментальному характеру различий между ними.

1. Империя прокариот (Prokaryota ). Организмы, в большинстве случаев представляющие собой одну клетку. Недостижимое для других групп разнообразие условий обитания и часто невероятная пластичность. Типы питания весьма разообразны. Их характеризуют по природе источников трех необходимых компонентов жизни: энергии, углерода и водорода (источника электронов). По источнику энергии различают две категории организмов: фототрофы (использующие солнечный свет) и хемотрофы (использующие энергию химических связей в питательных веществах. По источнику углерода выделяют автотрофы (СО 2) и гетеротрофы (органическое вещество). Наконец, по источнику водорода (электронов) различают органотрофы (потребляющие органику) и литотрофы (потребляющие производные литосферы – каменной оболоочки Земли: Н 2 , NH 3 , H 2 S, S, CO, Fe 2+ и т.д.) По такой классификации зеленые растения (см. ниже) – фотолитоавтотрофы, животные и грибы – хемоорганогетеротрофы. В мире прокариот встречаются самые разнообразные сочетания. Прокариоты могут быть далее подразделены на

· Царство эубактерии (Eubacteria, «обычные бактерии»). Клеточная стенка обычно содержит специфическое вещество – пептидогликан (муреин). Царство включает разнообразных представителей – от мирных сожителей человека типа кишечной палочки (Escherichia coli ) до опасных патогенов (возбудителей чумы, холеры, бруцеллеза и др.), от обогатителей почвы ценными азотистыми веществами (например, представители рода Azotobacter ) до окислителей железа (железобактерии Thiobacter ferooxidans ) и тех, кто способен фотосинтезировать подобно растениям, в том числе и с выделением кислорода (цианобактерии). В последние годы в некоторых работах царство «бактерии» делят на несколько самостоятельных царств.

· Царство археи(или архебактерии – Archaea или Archaebacteria ), обитающие в экзотических условиях (одни в полном отсутствие кислорода; другие – в насыщенным растворе соли; третьи – при 90-100 о С и т.д.) и имеющие своеобразное строение клеточной стенки и внутриклеточных структур. По некоторым признакам (например, организация рибосом) археи ближе не к про-, а к эукариотам («сестринская связь» архей и эукариот, см. Воробьева, 2006).

2. Империя эукариот (Eukaryota ). Как уже подчёркивалось, в империю эукариот входят организмы с вторичными полостями клеткок – органеллами, включая и ядро. Эукариоты включают в себя царства: простейшие, грибы, растения и животных:

· Царство простейшие (Protista ) Одноклеточные или колониальные (рыхлое объединение способных существовать самостоятельно клеток) организмы, имеющие клеточное ядро, окруженное двойной мембраной. По способу получения энергии делятся на группы, напоминающие 3 царства, данные ниже (есть протисты, подобные грибам, растениям и животным).

· Царство растения (Plantae ). Многоклеточные организмы, способные к усвоению энергии света (фотосинтезу) и потому часто не нуждающиеся в готовых органических соединениях (ведущие автотрофный образ жизни). Вода, минеральные соли и в некоторых случаях органика поступают путем всасывания. Растения поставляю органику для других царств живого и вырабатывают живительный кислород (последняя роль в известной мере выполняется также прокариотами – цманобактериями).

· Царство животные (Animalia ).Многоклеточные организмы, питающиеся готовыми органи­ческими соединениями (ведут гетеротрофный образ жизни), которые они приобретают посредством активного питания и передвижения, причем преимущественным объектом питания служат живые организмы. В рамках данной книги особый интерес представляют организмы с ярко выраженной социальностью – способностью формировать сложные надорганизменные системы с разделением функций, координацией поведения особей в масштабе всей системы. Таковы колониальные кишечнополостные, чьи колонии порой напоминают единый организм (сифонофоры), насекомые типа термитов, пчел или муравьев, чья социальная жизнь издавна вызывала восхищение у мыслителей и навевала аналогии с человеческим социумом (например, отраженную в басне XVIII века «О пчёлах», принадлежащей перу Мандевилля) и, наконец, хордовые, особенно млекопитающие.

«Командные посты» в биосфере Земли занимают представители типа хордовых: рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие во главе с человеком. Для них характерны следующие признаки:

· Хорда (спинная струна) – ось внутреннего скелета, упругий гибкий стержень.У высших хордовых имеется лишь на ранних стадиях развития зародыша, вытесняясь затем позвоночником.

· Центральная нервная система (спинной и головной мозг) имеет трубчатое строение и образуется как впячивание спинной стороны зародыша.

· У всех хордовых, по крайней мере на стадии зародыша, имеются жаберные щели – парные поперечные отверстия, прободающие стенку глотки.

Самый высокоорганизованный класс хордовых – млекопитающие (звери). Они имеют постоянную высокую температуру тела, высокоразвитую нервную систему. В первую очередь головной мозг. Рождают детенышей, которые развиваются в теле матери, получая питание через плаценту, а после рождения вскармливаются молоком» (Медников, 1994).

3.3.2. Разнообразие внутри одной таксономической группы живых существ , в частности внутри одного вида (скажем, разнообразие внутри вида кошка домашняя). Это разнообразие, в свою очередь, включает в себя ряд важных аспектов. Так, можно говорить о разнообразии группировок особей внутри одного и того же вида живого. Например, все обезьяны шимпанзе относятся к одному виду, но наблюдаются различия в поведении и языках общения, а также ритуалах у разных групп шимпанзе. Приматолог де Вал отмечает, что только в одной из изученных им групп шимпанзе обезьяны приветствовали друзей, поднимая над головой руки и пожимая их. Не менее важно разнообразие и внутри одной такой группы - будь то прайд львов или колония микроорганизмов.

Во-первых, особи различаются по возрастам (“возрастная пирамида”), а во многих случаях по половым характеристикам. Даже у бактерий могут быть два типа особей - F+ и F- клетки (у кишечной палочки, населяющей кишечник человека).

Во-вторых, имеются бесчисленные индивидуальные вариации. Биополитики обращают внимание на то, что и у человека в семьях велики индивидуальные различия, например, между братьями. И в человеческом обществе, и в группах любого другого вида живого такое разнообразие представляет результат сложного взаимодействия врожденных (генетических) характеристик и влияния различий в условиях жизни (факторов окружающей среды). Отметим, что даже в одной семье у человека в разных условиях живут старшие и младшие братья, любимые и нелюбимые дети.

На все эти индивидуальные отличия налагаются еще различия, диктуемые распределением ролей и функций во всей группе, семье, колонии, вообще биосоциальной системе. И тогда оказывается, что для разных социальных ролей лучше подходят особи с различными задатками, а также разные роли могут быть распределены по возрастам и полам индивидов. Например, при всем своем “эгалитаризме” (равенстве по богатству, авторитету, рангу, см. ниже, 3.7) первобытное общество учитывало возрастные, половые и просто индивидуальные различия. Мужчины в основном охотились, женщины - собирали плоды, коренья, ягоды и в большей мере участвовали в воспитании детей; люди преклонного возраста преимущественно становились старейшинами, шаманами, в то же время вождь во время войны чаще был молодым человеком. Люди с индивидуальными талантами могли их развивать - художественные дарования делать наскальные рисунки, искусные танцоры и рассказчики веселить соплеменников своими плясками и повествованиями, соответ­ственно.

Поэтому биоразнообразие во всех своих гранях поистине является необходимой предпосылкой оптимального, гармоничного функционирования целого анасамбля живого - биосферы. Организмы с различными характеристиками и требованиями к среде обитания, вступающие в разнообразные отношения друг с другом, могут быть функционально специализированны в рамках "тела биоса". Каждый из биологических видов может представлять собой жизненно важный орган этого "тела". Есть многочисленные примеры отрицательных глобальных последствий уничтожения одного только биологического вида.

3.3.3. Уровни организации живых организмов. Одним из важных аспектов биоразнообразия служит многоуровневость живых объектов. Читателю рекомендуем вернуться на мгновение в конец раздела 2.1 выше, где мы коснулись вопроса о многоуровневости (многослойности) мира в целом. В рамках приведенной нами схемы Н. Гартмана живое соответствует «органическому» слою (хотя и не исчерпывается им, проявляя элементы «душевного» и даже «духовного» -- на чем собственно и зиждется возможность сопоставительного биополитического подхода к человеку и другим формам живого). Но, даже оставаясь в рамках органического слоя (уровня), мы можем выделить в нем несколько уровней второго порядка – их Гартман (Hartmann, 1940) называл «ступенями бытия» (Seinsstufen). Эти «ступени бытия» – уровни внутри биологического – служат критерием различения живых объектов. Многоклеточный организм (растение, животное, гриб) отличается от одноклеточного, ибо имеет внутри себя дополнительные уровни организации (тканевый, организменный – чуть ниже мы приведём наш вариант шкалы этих уровней).

Любой единичный биологический объект (клетка бактерии, цветущее растение, обезьяна бонобо и др.) представляет собой сложно организованную систему, состоящую хотя бы из нескольких уровней, из числе приведённых ниже. Ситуация несколько напоминает русскую матрёшку, в которой находятся более маленькие матрёшки. Разные авторы, кроме упомянутого критерия «части и целого», вводят различные другие критерии вычленения уровней (размер, сложность организации и др.), предпочитают выделять разные уровни в качестве главных. Были предложены разнообразные конкретные схемы уровней живого, где выделяется от 4 до 8 (например, см. Кремянский, 1969; Сетров, 1971; Miller, 1978; Miller, Miller, 1993) уровней. Ниже мы приводим свою схему, как бы представляющую общий знаменатель взглядов различных авторов:

1. Молекулярный (молекулярно-биологический). Молекулы, которые служат строительными блоками биосистем (роль белков, полисахаридов и других крупных органических молкул – биополимеров), носителями наследственной информации (нуклеиновые кислоты – ДНК и РНК), сигналами для коммуникации (часто малые органические молекулы), формами запасания энергии (в первую очередь АТФ) и др.

2. Субклеточный (внутриклеточный). Сложенные из молекул микроструктуры (мембраны, органеллы и др.), входящие в состав живой клетки.

3. Клеточный. Уровень имеет особое значение, так как клетка (в отличие от отдельной молекулы или органеллы) есть элементарная единица жизни. Многие особи всю жизнь существуют в виде одной клетки – одноклеточные. У многоклеточных клетки не расходятся, а образуют единый организм. Например, человеческий организм состоит примерно из 10 15 клеток.

4. Органно-тканевый уровень. Принцип «матрешки» работает и дальше. У многоклеточных существ однотипные клетки формируют ткани, из которых состоят органы растений (лист, стебель и др.) и животных (сердце, печень и др.).

5. Организменный уровень. Целое живое существо (заметим, что у одноклеточных форм жизни, например, простейших, бактерий, понятия клеточный и организменный уровни тождественны друг другу). В рамках этого уровня рассматриваются не только специфические структуры и функции того или иного живого организма, но и поведение биологических индивидов, гамма их взаимоотношений между собой, что ведет к формированию надорганизменных (биосоциальных) систем. Здесь мы видим переход к еще более высоким – надорганизменным – уровням организации

6. Популяционный уровень. Уровень группировок особей одного вида (популяций).

7. Экосистемный (биоценотически-биогеоценотический) уровень. Уровень сообществ многих видов организмов, формирующих единую локальную систему (биоценоз), причем часто в рассмотрение включаются также окружающая организмы среда (ландшафт и др.); в этом случае вся система называвется экосистемой (биогеоценозом).

8. Биосферный уровень. Соответствует всей совокупности живых организмов планеты, рассмотренной как целостная система (биосфера, биос в терминологии Агни Влавианос-Арванитис).

Это общий очерк уровней живого, классификация которых значительно различается у разных исследователей, которые привносят в уровневые классификации свои специфические интересы. Более того, новые научные открытия время от времени вводят в обиход новые, ранее не признававщиеся уровни. Пример: исследования лабораторий В.Л. Воейкова и Л.В. Белоусова на биологическом факультете МГУ, вслед за более ранними работами Н.Г. Гурвича позволили предположить наличие еще одного уровня биоса (между молекулярно-биологическим и субклеточным) – уровня молекулярных ансамблей. Подобные ансамбли (например, молекула ДНК) уже обладают многими “живыми” свойствами, такими как память, активность, целостность (когерентность).

В предлагаемой ниже таблице обозначены важнейшие характеристики уровней организации живого и их социальные приложения. В принципе каждый из основных уровней организации биосистем имеет биополитически важные аспекты. Каждый уровень допускает достаточно плодотворные аналогии и экстраполяции, дающие пищу для ума для исследователей человеческого социума с его политическими системами.

Таблица. Уровни организации живого и их биополитическое значение

Уровни организации Биополитически важные аспекты
Молекулярно-биологический Биополимеры (нуклеиновые кислоты, белки и др.). Молекулярная генетика. Генетика поведения человека. Психогенетика. Генное разнообразие человечества. Расы. Генетические технологии
Клеточный, органно-тканевый (внутриорганизменный) Регуляторные факторы. Межклеточная коммуникация. Нейромедиаторы. Гормоны. Функционирование нервной системы и ее блоков (модулей). Нейрофизиология психики и поведения.
Организменный, популяционный (биосоциальный) Поведение вообще. Социальное поведение и его политические аспекты. Биосоциальные системы. Иерархические и горизонтальные (сетевые) структуры. Политическая система с биосоциальной (биополитической) точки зрения.
Экосистемный, биосферный Разнообразие экосистем. Охрана био-окружения как задача биополитики. Экологический мониторинг. Экосистемы внутри человеческого организма (микробиота) и их роль в поддержании соматического, психического и социального здоровья людей.

На молекулярно-биологическом уровне биополитический интерес представляют так называемые шапероны (от англ. chaperon – пожилая дама, сопровождающая молодую девушку) – белковые молекулы, которые обеспечивают функционально правильную укладку других молекул (например, ферментов). Представляется, что самоорганизующиеся политические движения современности, в том числе всякого рода сетевые структуры (см. о них 5.7 ниже) должны находиться под влиянием некоторых помогающих организаций-«шаперонов», которые направляли бы их деятельность в разумное русло. Создание аналогичных «шаперонов» на уровне целого государства, которые бы направляли демократический процесс по наиболее конструктивному руслу, не отнимая у участников этого процесса простор для деятельности, а только создавая им оптимальные условия, в том числе и в плане жизненных потребностей людей (осуществляя «биополитику» в понимании М. Фуко) – вот, по мысли автора данной книги, «рациональное зерно» политического термина управляемая демократия.

На клеточном уровне несомненную ценность представляет предложенное Р. Вирховым в XIX в. (см. 1.1) сравнение тканей в составе многоклеточного организма с «клеточными государствами», а закономерностей роста и деления клеток – с социальными нормами поведения граждан в государстве. Сравнение целого организма с политической системой – базисная аналогия для организмического подхода в социологии и политологии (см. Франчук, 2005а, б).

Однако наибольшее значение для биополитики имеет сопоставление биосистем на их популяционном уровне с объектами политологии. Взаимодействие индивидов в составе биосоциальных систем в сопоставлении с политическими системами человеческого общества будет основной темой четвертой и пятой глав настоящей книги.

Интерес представляют, впрочем, и еще более высокие уровни организации биосистем. Например, представляя генетически единый биологический вид, человечество тем не менее состоит из различных культур (с разными нормами поведения). С известным правом человечество в культурном плане можно рассматривать как аналог многовидовой ассоциации (биоценоза).

3.3.4. Диатропический подход к живому. В ХХ веке разнообразие живого служило предметом диатропического подхода к нему (С.В. Мейен, Ю.В. Чайковский, С.В. Чебанов). «Диатропика (от греч. diatrόpoV – разнообразный, разнохарактерный) – наука о разнообразии, т.е. о тех общих свойствах сходства и различия, которые обнаруживаются в больших совокупностях объектов» (Чайковский, 1990. С.3). Диатропический подход нацелен на построение типологии всего рассматриваемого класса объектов (например, всех кошек, всех растений, всех политических систем) с составлением полного кадастра многообразия форм индивидуальных объектов (таксонов) и также многообразия составляющих их частей (меронов), к примеру, передних конечностей млекопитающих или вариантов кабинетов министров в политических системах. Полный кадастр части тела (мерона) «конечность» у млекопитающих включает в себя варианты «лапа» (наиболее распространенный), «ласт» (у нерп, моржей), «плавник» (у китообразных).

На базе кадастра меронов создаются “обобщенные образы” (архетипы), тех или иных форм живого или их групп. Например, создать обобщенный портрет кошки означает выяснить, какие варианты сочетаний частей (меронов) делают животное кошкой, например упомянутый мерон «передняя конечность» может быть лишь «лапой», никак не «ластом» или «плавником», он не может также отсутствовать (за вычетом уродств или прижизненных травм). Более детально – лапа должна быть когтистой, подушечки должны быть определенных цветов, причем при заданном цвете подушечек лап (скажем, розовом) другие мероны должны также иметь совместимые характеристики (живот у кошки с розовыми подушечками должен непременно быть белым), если мы хотим, чтобы сочетание меронов реально встречалось среди кошачьего племени.

Диатропический подход исследует также вопрос о роли многообразия (разнокачественности, гетерогенности) элементов для выполнения функций той системы, которую они слагают. Приведем здесь пример, относящийся к человеческому обществу. Многие государства состоят из представителей различных этнических групп. Как это соотносится с разнообразием социальных функций, в частности, профессий? Благоприятствует ли разнообразие этнических особенностей более полному насыщению всех формируемых в обществе профессиональных вакансий?

В связи с диатропическим подходом к биосистемам остановимся на реализуемом на разных уровнях живого законе необходимого разнообразия(Реймерс, 1992). Устойчивое функционирование надорганизменных систем, также как и просто многоклеточного организма как «коллектива клеток» предполагает, что элементы не полностью одинаковы, а различаются между собой, что служит предпосылкой их специализации по функциям.

В биосистемах этот закон дополняется законом избыточности системных элементов, когда каждая функция в системе выполняется не одним, а сразу многими ее элементами. Биосистемы функционируют надежнее благодаря этому закону (функции иммунной защиты реализуются в организме человека и миндалинами, и тимусом, и аппендиксом, и лимфоузлами, и селезенкой): выбывший из строя элемент системы замещается другими, выполняющими ту же функцию. Однако, наряду с избыточностью и дублированием функций многими звеньями системы в развитии биосистем прослеживается и другая теденция – уменьшения числа однородных блоков с идентичной функцией. Ранее однородные элементы в этом случае дифференцируются по «профессиям», что дает возможность выполнять большее число функций в рамках всей системы. Надежность всей системы в этом случае сохраняется за счет повышения качества каждого отдельно взятого элемента. У кольчатых червей (например, земляного червя или пиявки) тело сложено из многих однородных, повторяющихся звеньев – сегментов. В ходе эволюции кольчатые черви дали начало членистоногим (насекомым, паукообразным, ракообразным), у которых сегменты тела уже не однородны, а специализированы по функциям.

Подробное решение параграф Подведите итог 2 главы по биологии для учащихся 11 класса, авторов И.Н. Пономарева, О.К. Корнилова, Т.Е. Лощилина, П.В. Ижевский Базовый уровень 2012

  • Гдз по Биологии за 11 класс можно найти
  • Гдз рабочая тетрадь по Биологии за 11 класс можно найти

1. Сформулируйте определение биосистемы «клетка». .

Клетка – элементарная живая система, основная структурная единица живых организмов, способная к самовозобновлению, саморегуляции и самовоспроизведению.

2. Почему клетку называют основной формой жизни и элементарной единицей жизни?

Клетка – основная форма жизни и элементарной единицей жизни, потому что любой организм состоит из клеток, а самый маленький организм является клеткой (простейшие). Отдельные органеллы за пределами клетки жить не могут.

На клеточном уровне происходят следующие процессы: обмен веществ (метаболизм); поглощение и, следовательно, включение различных химических элементов Земли в содержимое живого; передача наследств венной информации от клетки к клетке; накопление изменений в генетическом аппарате в результате взаимодействия со средой; реагирование на раздражения при взаимодействии с внешней средой. Структурными элементами системы клеточного уровня являются разнообразные комплексы молекул химических соединений и все структурные части клетки - поверхностный аппарат, ядро и цитоплазма с их органоидами. Взаимодействие между ними обеспечивает единство, целостность клетки в проявлении её свойств как живой системы в отношениях с внешней средой.

3.Поясните механизмы устойчивости клетки как биосистемы.

Клетка – элементарная биологическая система, а любая система-это комплекс взаимосвязанных и взаимодействующих компонентов, составляющих единое целое. В клетке этими компонентами являются органоиды. Клетка способна к обмену веществ, саморегуляции и самообновлению, благодаря чему и поддерживается ее устойчивость. Вся генетическая программа клетки находится в ядре, а различные отклонения от нее воспринимаются ферментативной системой клетки.

4. Сравните клетки эукариот и прокариот.

Все живые организмы на Земле делятся на две группы: прокариоты и эукариоты.

Эукариоты – это растения, животные и грибы.

Прокариоты – это бактерии (в том числе цианобактерии (сине-зеленые водоросли).

Главное отличие. У прокариот нет ядра, кольцевая ДНК (кольцевая хромосома) расположена прямо в цитоплазме (этот участок цитоплазмы называется нуклеоид). У эукариот есть оформленное ядро (наследственная информация [ДНК] отделена от цитоплазмы ядерной оболочкой).

Другие отличия.

Раз у прокариот нет ядра, то нет и митоза/мейоза. Бактерии размножаются делением надвое, почкованием

У эукариот различное кол-во хромосом, в зависимости от вида. У прокариот единственная хромосома (кольцевидной формы).

У эукариот присутствуют органоиды, окруженные мембранами. У прокариот отсутствуют органоиды, окруженные мембранами, т.е. нет эндоплазматической сети (ее роль выполняют многочисленные выступы клеточной мембраны), нет митохондрий, нет пластид, нет клеточного центра.

Клетка прокариот гораздо меньше клетки эукариот: по диаметру в 10 раз, по объему – в 1000 раз.

Сходство. Клетки всех живых организмов (всех царств живой природы) содержат плазматическую мембрану, цитоплазму и рибосомы.

5. Охарактеризуйте внутриклеточную структуру эукариот.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.

Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды: цитоплазматическая мембрана (ЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон на разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

6. Каким образом реализуется принцип «клетка - от клетки»?

Размножение прокариотических и эукариотических клеток происходит только путем деления исходной клетки, которому предшествует воспроизведение ее генетического материала (редупликация ДНК).

У эукариотических клеток единственно полноценным способом деления является митоз (или мейоз при образовании половых клеток). При этом образуется специальный аппарат клеточного деления - клеточное веретено, с помощью которого равномерно и точно по двум дочерним клеткам распределяются хромосомы, до этого удвоившиеся в числе. Этот тип деления наблюдается у всех эукариотических, как растительных, так и животных клеток.

Прокариотические клетки, делящиеся так называемым бинарным образом, также используют специальный аппарат разделения клеток, значительно напоминающий митотический способ деления эукариот. Также деля материнскую клетку надвое.

7. Охарактеризуйте фазы и значение митоза.

Процесс митоза принято подразделять на четыре основные фазы: профазу, метафазу, анафазу и телофазу. Так как он непрерывен, смена фаз осуществляется плавно - одна незаметно переходит в другую.

В профазе увеличивается объем ядра, и вследствие спирализации хроматина формируются хромосомы. К концу профазы видно, что каждая хромосома состоит из двух хроматид. Постепенно растворяются ядрышки и ядерная оболочка, и хромосомы оказываются беспорядочно расположенными в цитоплазме клетки. Центриоли расходятся к полюсам клетки. Формируется ахроматиновое веретено деления, часть нитей которого идет от полюса к полюсу, а часть - прикрепляется к центромерам хромосом. Содержание генетического материала в клетке остается неизменным (2n4c).

В метафазе хромосомы достигают максимальной спирализации и располагаются упорядоченно на экваторе клетки, поэтому их подсчет и изучение проводят в этот период. Содержание генетического материала не изменяется (2n4c).

В анафазе каждая хромосома «расщепляется» на две хроматиды, которые с этого момента называются дочерними хромосомами. Нити веретена, прикрепленные к центромерам, сокращаются и тянут хроматиды (дочерние хромосомы) к противоположным полюсам клетки. Содержание генетического материала в клетке у каждого полюса представлено диплоидным набором хромосом, но каждая хромосома содержит одну хроматиду (4n4c).

В телофазе расположившиеся у полюсов хромосомы деспирализуются и становятся плохо видимыми. Вокруг хромосом у каждого полюса из мембранных структур цитоплазмы формируется ядерная оболочка, в ядрах образуются ядрышки. Разрушается веретено деления. Одновременно идет деление цитоплазмы. Дочерние клетки имеют диплоидный набор хромосом, каждая из которых состоит из одной хроматиды (2n2c).

Биологическое значение митоза состоит в том, что он обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

8. Что представляет собой клеточный цикл?

Клеточный цикл (митотический цикл) - это весь период существования клетки с момента появления в процессе деления материнской клетки до ее собственного деления (включая и само деление) или гибели. Он состоит из интерфазы и деления клетки.

9. Какую роль в эволюции организмов выполнила клетка?

Клетка дала начало дальнейшего развития органического мира. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, зародилась многоклеточность, возникла специализация клеток, появились клеточные ткани.

10. Назовите основные процессы жизнедеятельности клетки.

Обмен веществ – в клетку поступают питательные вещества, а удаляются ненужные. Движение цитоплазмы – транспортирует вещества в клетке. Дыхание – в клетку поступает кислород, удаляется углекислый газ. Питание - в клетку поступают питательные вещества. Рост - клетка увеличивается в размерах. Развитие – строение клетки усложняется.

11. Укажите значение митоза и мейоза в эволюции клетки.

Благодаря митотическому делению клеток идет индивидуальное развитие организма - увеличивается его рост, обновляются ткани, заменяются постаревшие и отмершие клетки, осуществляется бесполое размножение организмов. Также обеспечивается постоянство кариотипов особей вида.

Благодаря мейозу происходит кроссинговер (обмен участками гомологичных хромосом). Это способствует перекомбинации генетической информации, и образуются клетки с совершенно новым набором генов (разнообразие организмов).

12. Какие важнейшие события в развитии живой материи совершились на клеточном уровне в процессе эволюции?

Крупнейшие ароморфозы (митоз, мейоз, гаметы, половой процесс, зигота, вегетативное и половое размножение).

Возникновение ядер в клетках (эукариоты).

Симбиотические процессы у одноклеточных - возникновение органелл.

Автотрофность и гетеротрофность.

Подвижность и неподвижность.

Возникновение многоклеточных организмов.

Дифференциация функций клеток у многоклеточных.

13. Охарактеризуйте общее значение клеточного уровня живой материи в природе и для человека.

Клетка, возникнув однажды в виде элементарной биосистемы, стала основой всего дальнейшего развития органического мира. Эволюция бактерий, цианобактерий, различных водорослей и простейших целиком происходила за счёт структурных, функциональных и биохимических преобразований первичной живой клетки. В ходе этой эволюции было достигнуто поразительное разнообразие клеточных форм, однако общий план строения клетки не претерпел принципиальных изменений. В процессе эволюции на основе одноклеточных форм жизни зародилась многоклеточность, возникла специализация клеток и появились клеточные ткани.

Выскажите свою точку зрения

1. Почему именно на клеточном уровне организации жизни возникли такие свойства живых существ, как автотрофность и гетеротрофность, подвижность и неподвижность, многоклеточность и специализация в строении и функциях? Что способствовало таким событиям в жизни клетки?

Клетка - это основная структурно-функциональная единица живого. Это некая живая система, для которой свойственны дыхание, питание, обмен веществ, раздражимость, дискретность, открытость, наследственность. Именно на клеточном уровне возникли первые живые организмы. В клетке каждый органоид выполняет определенную функцию и имеет определенное строение, объединившись и функционируя вместе, они представляют собой единую биосистему, для которой присущи все признаки живого.

Клетка, как многоклеточный организм, также эволюционировала на протяжении многих веков. Различные условия среды, природные катаклизмы, биотические факторы привели к усложнению организации клеток.

Именно поэтому автотрофность и гетеротрофность, подвижность и неподвижность, многоклеточность и специализация в строении и функциях возникли именно на уровне клетки, где все органеллы и клетка в целом существуют гармонично и целесообразно.

2. На каком основании цианобактерии все ученые очень долго относили к растениям, в частности к водорослям, и лишь в конце XX в. их поместили в царство бактерий?

Сравнительно крупные размеры клеток (носток, например, образует довольно крупные колонии, которые можно даже взять в руки), осуществляют фотосинтез с выделением кислорода сходным с высшими растениями образом, также внешнее сходство с водорослями было причиной их рассмотрения ранее в составе растений («синезелёные водоросли»).

А в конце ХХ века было доказано, что клетки синезеленых ядер не имеют, да и хлорофилл в их клетках не такой, как у растений, а характерный для бактерий. Сейчас цианобактерии относятся к числу наиболее сложно организованных и морфологически дифференцированных прокариотных микроорганизмов.

3. Из каких растительных и животных клеточных тканей сделана одежда и обувь, в которых вы пришли сегодня в школу?

Выберите подходящие. Можно привести массу примеров. К примеру, из льна (лубяные волокна - проводящая ткань) делают ткань прочной структуры (рубашка муж., женские костюмы, белье, носки, брюки, сарафаны). Из хлопка делают нижнее белье, футболки, рубашки, брюки, сарафаны). Из кожи животных (эпителиальная ткань) делают обувь (туфли, босоножки, сапоги), ремни. Из шерсти пушных зверей изготавливают теплую одежду. Из шерсти делают свитера, носки, шапки, варежки. Из шелка (секрет желез тутового шелкопряда - соединительная ткань) - рубашки, шарфы, белье.

Проблема для обсуждения

Дед Чарлза Дарвина Эразм Дарвин - врач, учёный-натуралист и поэт - написал в конце XVIII в. поэму «Храм природы», опубликованную в 1803 г., уже после его смерти. Прочитайте небольшой отрывок из этой поэмы и подумайте, какие идеи о роли клеточного уровня жизни можно обнаружить в данном произведении (отрывок приведен в книге).

Возникновение земной жизни происходило с самых меньших клеточных форм. Именно на клеточном уровне возникли первые живые организмы. Клетка, как организм, также росла, эволюционировала, тем самым дала толчок к образованию множества клеточных форм. Они смогли заселить и «ил» и «водяную массу». Скорее всего, различные условия среды, природные катаклизмы, биотические факторы привели к усложнению организации клеток, что повлекло за собой «обретение членов» (что подразумевает многоклеточность).

Основные понятия

Прокариоты, или Доядерные, - организмы, клетки которых не имеют оформленного ядра, ограниченного мембраной.

Эукариоты, или ядерные, - организмы, клетки которых имеют хорошо оформленное ядро, отделённое ядерной оболочкой от цитоплазмы.

Органоид - клеточная структура, обеспечивающая выполнение специфических функций.

Ядро - важнейшая часть эукариотической клетки, регулирующая всю её активность; несёт в себе наследственную информацию в макромолекулах ДНК.

Хромосома – это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке.

Биологическая мембрана - эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность.

Митоз (непрямое деление клетки) - универсальный способ деления эукариотических клеток, при котором дочерние клетки получают генетический материал, идентичный исходной клетке.

Мейоз - способ деления эукариотных клеток, сопровождающийся уменьшением вдвое (редукцией) числа хромосом; одна диплоидная клетка даёт начало четырём гаплоидным.

Клеточный цикл - репродуктивный цикл клетки, состоящий из нескольких последовательных событий (например, интерфаза и митоз у эукариот), во время которых содержимое клетки удваивается и она делится на две дочерних.

Клеточный структурный уровень организации живой материи – один из структурных уровней жизни, структурно-функциональной единицей которого является организм, а единицей - клетка. На организменном уровне происходят следующие явления: размножение, функционирование организма как единого целого, онтогенез и др.

В целом. Но рассматривать ее в таком разрезе крайне тяжело, поэтому биосистему принято разделять на различные уровни организации живой материи. Основных уровней семь:- молекулярный;- клеточный;- тканевый;- организменный;- популяционно-видовой;- биогеоценотический;- биосферный.Эти уровни включаются друг в друга, образуя единство живой природы в целом. На уровне описываются молекулярные процессы, происходящие в живых клетках, а также и сами молекулы с точки зрения их включения в состав клетки. Молекулы могут образовать различные химические и органические соединения для обеспечения жизнедеятельности клеток. Исследованиями биосферы на этом уровне занимаются такие науки, как биофизика, биохимия, молекулярная и молекулярная . Клеточный уровень включает в себя простейшие одноклеточные организмы, а также совокупности различных клеток, являющихся частями многоклеточных организмов. Это уровень является предметом изучения таких наук, как эмбриология, цитология, генная инженерия. В их рамках ведется изучение процессов биосинтеза и фотосинтеза, деления клеток, участия различных химических элементов и Солнца на существование биосистемы. Тканевый уровень представляет из себя определенные ткани, которые объединяют в себе схожие по строению и функциям клетки. С развитием многоклеточного организма происходит естественная дифференциация клеток по выполняемым ими ролям. Все обладают мышечной, эпителиальной, соединительной, нервной и т.д тканями.На организменном уровне сосуществуют различные многоклеточные растения, животные, грибы, а также различные микроорганизмы (в том числе и одноклеточные) с точки зрения их влияния на многоклеточные существа. Изучением этого уровня биосистемы занимаются анатомия, аутэкология, генетика, гигиена, физиология, морфология, а также ряд других наук. На популяционно-видовом уровне биосистемы учеными изучаются процессы, протекающие в популяциях и видах различных живых существ, объединенных между собой генофондом и способом воздействия на окружающую среду. Помимо этого, на данном уровне рассматриваются проблемы взаимодействия различных видов и популяций. Биогеоценозный компонент биосистемы образован различными видами и популяциями живых существ на Земле. На этом уровне изучаются различные особенности и специфика распределения живых существ по различным территориям. При этом учитывается построение пищевых сетей. Науками, изучающими данный уровень, являются биогеография и экология.Самый главный и обширный уровень организации жизни - это биосферный, где изучаются многочисленные связи между человеком и биогеоценозным уровнем. Изучением данного уровня вместе с антропогенным воздействием занимается экология.

1.13. (дополнение) Универсальные свойства биосистем

При всей специфичности биосистем разных уровней, для них можно выделить ряд универсальных свойств. Назовем некоторые из них.

Определенный состав и упорядоченность . Все биосистемы характеризуются высокой упорядоченностью, которая может поддерживаться только благодаря протекающим в них процессам. В состав всех биосистем, лежащих выше молекулярного уровня, входят определенные органические вещества, некоторые неорганические соединения, а также большое количество воды. Упорядоченность клетки проявляется в том, что для нее характерен определенный набор клеточных компонентов, а упорядоченность биогеоценоза - в том, что в его состав входят определенные функциональные группы организмов и связанная с ними неживая среда.

Иерархичность организации . Как рассматривалось в пункте 1.05, жизнь проявляет себя одновременно на многих уровнях организации, каждый из которых имеет свои особенности.

Обмен веществ - важнейшая особенность функционирования биосистем. Это совокупность происходящих в них химических преобразований и перемещений веществ. На клеточном и организменном уровнях обмен веществ связан с питанием , газообменом и выделением , а, например, на биогеоценотическом - с круговоротом веществ и их перемещением между разными биогеоценозами.

Поток энергии через биосистемы тесно связан с их обменом веществ. Благодаря тому, что атомы вещества в ходе их преобразований не изменяются, вещество может совершать круговорот в живых системах. Энергия, в соответствии со вторым началом термодинамики, при превращениях частично рассеивается (переходит в форму тепла), и поэтому живые системы существуют только в условиях текущего через них потока энергии из внешнего источника. Для биосферы в целом таким источником является Солнце.

Способность к развитию . Все биосистемы возникают и совершенствуются в ходе эволюции . Эволюция на молекулярном уровне привела к возникновению организмов; благодаря эволюции популяций меняются характерные свойства организмов и всех входящих в их состав систем. Изменение биогеоценозов и биосферы также связано с их способностью к эволюции. Развитие отдельного организма называется онтогенезом ; эволюционная история вида - филогенезом ; развитие биоценозов на одном участке - сукцессией .

Приспособленность - соответствие между особенностями биосистем и свойствами среды, с которой они взаимодействуют. Приспособленность не может быть достигнута раз и навсегда, так как среда непрерывно меняется (в том числе благодаря воздействию биосистем и их эволюции). Поэтому все живые системы способны отвечать на изменения среды и вырабатывать приспособления ко многим из них. Результатом способности живых систем вырабатывать приспособления является поражающее воображение совершенство и целесообразность живых организмов и жизни в целом. Долгосрочные приспособления биосистем осуществляются благодаря их эволюции. Краткосрочные приспособления клеток и организмов обеспечиваются благодаря их раздражимости - свойству реагировать на внешние или внутренние воздействия. Определенным образом отвечают на изменения и биосистемы всех других уровней, что позволяет говорить, что они находятся в состоянии обмена информацией со средой.

Саморегуляция . Биосистемы находятся в состоянии постоянного обмена веществом, энергией и информацией с окружающей средой. Например, клетки и организмы благодаря саморегуляции поддерживают постоянство своей внутренней среды (гомеостаз), а биогеоценозы поддерживают свой видовой состав и определенные свойства неживой среды. Поддержание постоянства свойств биосистем обеспечивается благодаря отрицательным обратным связям, а их изменение и развитие - благодаря положительным обратным связям.

Динамичность (состояние непрерывных изменений). Жизнедеятельность на всех уровнях организации биосистем связана с обменом веществ и информации, а также потоком энергии. При этом каждая биосистема, начиная от клеточного уровня, является не столько структурой, сколько процессом. Так, клетка остается сама собой, несмотря на то, что в результате обмена веществ сменяются образующие ее вещества. Популяция существует, несмотря на то, что гибнут и появляются входящие в ее состав особи. Для клеток и организмов характерным проявлением динамичности является подвижность - способность к изменению положения и формы самой системы и ее частей.

Целостность (интегрированность) - необходимое условие для рассмотрения того или иного объекта как системы. Это результат взаимосвязи и взаимозависимости частей биосистем, основа возникновения у системы эмергентных свойств. Системы разных уровней отличаются по степени взаимозависимости своих частей. К примеру, в состав клетки должен входить совершенно определенный состав компонентов, строго соответствующих друг другу (если митохондрия синтезирует не все свои белки, то ядро обязательно должно управлять синтезом недостающих, и вполне соответствующих имеющимся в митохондрии). Организм состоит из определенного комплекта органов. Биогеоценоз тоже состоит из определенного набора компонентов (например, автотрофов и гетеротрофов), но их состав оказывается в большой мере заменяемым. Раз связи подсистем в клетке и организме являются более жесткими (свойства одной подсистемы требуют строго определенных характеристик другой подсистемы) чем в биогеоценозе, клетку и организм можно считать более целостными. На биогеоценотическом и биосферном уровне в состав биосистем входят как живые, так и неживые компоненты (впрочем, неживые компоненты, например отмершие ткани, могут входить и в состав организмов, а также биосистем других уровней).

Уникальность . Все биосистемы, начиная от клеточного уровня, неповторимы и отличаются от аналогичных систем. Например, имеющие идентичную наследственную информацию организмы (однояйцовые близнецы, клоны и т.д.) обладают неповторимой индивидуальностью, зависящей от бесконечно разнообразных особенностей воздействия на них среды и саморегуляции в ходе развития.

Способность к воспроизводству биосистем обеспечивает устойчивость жизни во времени. Биомолекулы синтезируются клеткой; клетки (и даже некоторые структуры эукариотической клетки) воспроизводятся путем деления. На организменном уровне воспроизводство обеспечивается благодаря размножению . Преемственность поколений на организменном (а также на клеточном) уровне обеспечивается наследственностью , а возможность эволюции - изменчивостью . Воспроизводство популяций, биогеоценозов (а быть может и биосферы) обеспечивается не только размножением организмов, но и благодаря их способности к расселению.