Физика в медицине и ее роль. История развития медицинской физики Какова связь физики с медициной

  1. 1. МЕДИЦИНСКАЯ ФИЗИКА Зачем нужна физика в медицине? Проект выполнил ученик 10 класса Васяев Иван
  2. 2. ЧТО ТАКОЕ МЕДИЦИНСКАЯ ФИЗИКА И КАКОВА ЕЕ ЦЕЛЬ?  Медицинская физика – наука о системе, состоящей из физических приборов и изучения лечебно-диагностических аппаратов и технологий. Цель науки: изучение систем профилактики и диагностики заболеваний с помощью методов физики, математики и техники.
  3. 3. КАК ЖЕ ЗАКОНЫ ФИЗИКИ ПРИМЕНЯЮТСЯ К ЖИВОМУ? Например: Сокращение и упругость мышц,скелет человека представляет собой связь из рычагов, удерживающий человека в равновесии. Эти примеры демонстрирует биомеханику. Движение крови по сосудам показывает гемодинамику.
  4. 4. РЕНТГЕН.  Рентген – это внесистемная единица рентгеновского и гамма- излучения. Методы с использованием рентгеновского излучения были открыты Вильгельмом Рентгеном. В 1921 году появился первый рентген. Рентгеновское излучение характеризуется проникновением сквозь мягкие ткани и отображением твердых тканей на рентгенограмме. Рентген используется в травматологии, стоматологии, флюорография и т.д. С помощью рентгена можно диагностировать такие заболевания как рак легких,туберкулез, пневмония, заболевания костей,травмы и т.д.
  5. 5. УЛЬТРАЗВУКОВАЯ ДИАГНОСТИКА. УЛЬТРАЗВУК. Ультразвук – колебания с частотой за пределами слышимости человека, выше 20 000 Герц. Открыт в 1880 году братьями Пьером и Жаком Кюри. Ультразвук способен распространяться в мягких тканях, что позволяет визуализировать состоянии внутренних органов. Эта способность позволяет диагностировать различные заболевания органов. Применяется в терапии, хирургии, акушерстве и т.д.
  6. 6. ЭЛЕКТРОКАРДИОГРАФИЯ. Электрокардиография (ЭКГ) – метод регистрации электрических потенциалов при работе сердца. ЭКГ было открыто в 19 веке Габриелем Липпманом. Он обнаружил,что при работе сердца образуется некоторое количество электричества. С помощью этого метода можно диагностировать многие заболевания сердца.
  7. 7. ОПТИКА Оптика – учение о свете. Спектр света от атомов может способствовать определению в тканях и жидкостях различных химических элементов. Оптика используется для осветительных приборов, аппаратов для светопреломления, эндоскопов,лазерной установки. Такие приборы применяются в науках о глазе и в методах диагностирования с помощью наблюдения.
  8. 8. МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ (МРТ).  МРТ – это метод исследования внутренних органов и тканей с использованием методов измерения электромагнитного отклика ядер водорода на возбуждение их электромагнитных волн при высоком напряжении. В 1973 году профессором-химиком Полом Лотербургом основал МРТ. С помощью МРТ можно определить с точностью различные процессы в организме
  9. 9. ГАЛЬВАНИЗАЦИЯ.  Гальванизация – это метод лечения воздействием постоянного тока небольшой силы и напряжения. Этот метод назван в честь ученого открывшего его Луиджи Гальвани. Под воздействием метода в тканях идет расслабление, то есть изменение концентрации ионов, следовательно, изменение биохимических процессов.
  10. 10. ЛАЗЕРОТЕРАПИЯ.  Лазеротерапия – метод, использования световой энергии лазерного излучения. Первые исследования начались в Казанском университете в 1964 году. Впервые был использован в лечении болезней суставов, позвоночника, нервной системы у детей. При воздействии на ткани расширяет микрососуды и образует новые, стимулирует окислительно- восстановительные процессы, активизирует ферменты, изменяет мембранный потенциал. При облучении лазером крови нормализуются реологические показатели крови, увеличивается снабжение тканей кислородом, уменьшается ишемия в тканях организма, снижается уровень холестерина, сахара, тормозится высвобождение гистамина и других медиаторов воспаления из тучных клеток, происходит нормализация иммунитета. При сравнении традиционного лечения и лазерного оказывается, что лазерное лечение более эффективно и на 28 % дешевле.
  11. 11. МАГНИТОТЕРАПИЯ.  Магнитотерапия –то воздействие на организм человека постоянных или переменных магнитных полей для лечения и профилактики заболеваний и поддержания организма в тонусе. При воздействии на ткани статического магнитного поля возникают электрические поля, изменяющие физико- химических свойств в
  12. 12. ЭЛЕКТРОСТИМУЛЯЦИЯ.  Электростимуляция – дозированное воздействие электрическим током на органы или системы органов для стимуляции их деятельности. С профилактической целью электростимуляция используется для поддержания жизнедеятельности и питания мышцы, предупреждения ее атрофии при вынужденной иммобилизации и гипокинезии обусловленной другими причинами (заболевания суставов и др.), а также для профилактики послеоперационных флеботромбозов. С лечебной целью электростимуляцию наиболее часто применяют для восстановления функции поврежденного двигательного нерва, при парезах и параличах, вследствие неврита, мимических мышц, а также при спастических параличах. Следует отметить, что в последнее время электростимуляция получает все большее применение с целью нормализации функции при заболеваниях внутренних органов и систем.
  13. 13. ИМПУЛЬСНЫЙ ТОК.  Импульсный ток– ток, периодически повторяющийся различными толчками (импульсами). Импульсный ток применяют для: нормализации функционального состояния ЦНС и ее регулирующего влияния на различные системы организма; получения болеутоляющего эффекта при воздействии на периферическую нервную систему; стимуляции двигательных нервов, мышц и внутренних органов; усиления кровообращения, трофики тканей, достижения противовоспалительного эффекта и нормализации функций различных органов и систем.
  14. 14. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ.  Ионизирующее излучение – поток микрочастиц, способные ионизировать вещество. Этот вид излучения помогает увидеть картину внутренних органов и скелета,способствуе т лечению опухолей с помощью лучевой терапии.
  15. 15. РАДИОАКТИВНОЕ ИЗЛУЧЕНИЕ  Радиоактивное излучение - то феномен, который подразумевает, что поток элементарных радиоактивных частиц. Первое открытие этого феномена было сделано в 1896 году химиком Беккерель. Далее этот феномен исследовали Пьер и Мария Кюри. В современной медицине радиотерапия является одним из трех ключевых методов лечения онкологических заболеваний (двумя другими являются химиотерапия и традиционная хирургия). При этом, если отталкиваться от тяжести побочных эффектов, лучевая терапия переносится гораздо легче.
  16. 16. ВЫВОД  Таким образом,

Абрамова Ульяна

Введение.

Медицина и физика - это две структуры, которые окружают нас в повседневной жизни. С каждым днем медицина за счет физики модернизируется, благодаря чему все больше людей могут избавиться от болезней.

Цель работы: изложить основные идеи и познакомить с существующим разнообразием, связанным с использованием физики в медицине.

Для достижения цели в работе поставлены следующие задачи:

  1. Провести анализ литературы для изучения проблемы.
  2. Выяснить, что такое физика и медицина?
  3. Выяснить как применяются знания физики в медицине.
  4. Выяснить какие приборы помогают в медицине.
  5. Доказать, что при помощи знания физики в медицине, медицина стала намного успешней.

Актуальность темы: заключается в том, чтобы выяснить какое значение имеет физика в медицине и как они связаны с сегодняшним прогрессом.

Скачать:

Предварительный просмотр:

Муниципальное автономное общеобразовательное учреждение средняя школа №5 с углублённым изучением химии и биологии города Старая Русса Новгородской области.

Учебная работа в рамках Менделеевских чтений.

Тема: «Физика в медицине».

Выполнила: Абрамова Ульяна ученица 9А класса

Руководитель: Куракова Надежда Александровна

Г. Старая Русса

2018г

  1. Введение. стр. 3
  2. Общее представление. стр. 4
  3. Физика в медицине. стр. 5
  4. Использование достижений физики в лечении заболеваний. стр. 6
  5. Рентгеновские лучи. стр. 7
  6. Ультразвуковое обследование. стр. 8
  7. Иридодиагностика. стр. 9
  8. Радиодиагностика. стр. 9
  9. Лазер как физический прибор. стр.9
  10. Плазменный скальпель. стр. 10
  11. Аппарат искусственного кровообращения стр. 10
  12. Физиотерапия. стр. 11
  13. Заключение. стр. 12
  14. Используемые источники. стр. 13

Введение.

Медицина и физика - это две структуры, которые окружают нас в повседневной жизни. С каждым днем медицина за счет физики модернизируется, благодаря чему все больше людей могут избавиться от болезней.

Цель работы: изложить основные идеи и познакомить с существующим разнообразием, связанным с использованием физики в медицине.

Для достижения цели в работе поставлены следующие задачи:

  1. Провести анализ литературы для изучения проблемы.
  2. Выяснить, что такое физика и медицина?
  3. Выяснить как применяются знания физики в медицине.
  4. Выяснить какие приборы помогают в медицине.
  5. Доказать, что при помощи знания физики в медицине, медицина стала намного успешней.

Актуальность темы: заключается в том, чтобы выяснить какое значение имеет физика в медицине и как они связаны с сегодняшним прогрессом.

Общее представление.

Физика (от др.-греч. «природа») -наука, изучающая наиболее общие фундаментальные закономерности материального мира. Законы физики лежат в основе всего естествознания.

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности - Аристотеля, жившего в IV веке до нашей эры.

Медицина [латинское medicina (ars) - врачебная, лечебная (наука и искусство)] - область науки и практическая деятельность, направленные на сохранение и укрепление здоровья людей, предупреждение и лечение болезней.

Физика в медицине.

В настоящее время обширная линия соприкосновения этих наук всё время расширяется и упрочняется. Нет ни одной области медицины, где бы не применялись физические приборы. Такие как:

  • Наркозно-реанимационная аппаратура
  • Хирургическое оборудование:
  1. Электрохирургические аппараты
  2. Лазерные хирургические аппараты
  3. Светильники бестеневые хирургические
  • Терапевтическое оборудование
  1. Ингаляторы
  2. Микроволновая терапия
  3. Высокочастотная терапия
  4. Ударно-волновая терапия
  5. Низкочастотная терапия
  6. Многофункциональные аппараты для физиотерапии
  7. Ультразвуковая терапия
  8. Магнитотерапия
  9. Лазерная терапия
  • Бактерицидные облучатели и тд.

Использование достижений физики в лечении заболеваний.

Становление научной медицины было бы невозможно без достижений в области естествознания и техники, методов объективного исследования больного и способов лечения.

В процессе развития медицина дифференцировалась на ряд самостоятельных отраслей.

В терапии, хирургии и др. областях медицины широко используются достижения физической науки и техники. Физика помогает диагностике заболеваний.

Рентгеновские лучи.

Рентгеновские лучи - не видимое глазом электромагнитное излучение.

Рентгенология - область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем и диагностики заболеваний.

Рентгеновские лучи открыл немецкий физик Вильгельм Рентген (1845 – 1923).

Проникая сквозь мягкие ткани, рентгеновские лучи высвечивают кости скелета и внутренние органы. На снимках, получаемых с помощью рентгеновской аппаратуры, можно выявить болезнь на ранних стадиях и принять необходимые меры.

Так выглядит рентгеновское исследование органов человека.

Ультразвуковое обследование.

Ультразвуковое обследование - исследование, когда высокочастотный звуковой луч прощупывает наш организм, словно эхолот – морское дно, и создаёт его «карту», отмечая все отклонения от нормы.

Ультразвук - не слышимые человеческим ухом упругие волны.

Ультразвук содержится в шуме ветра и моря, издается и воспринимается рядом животных (летучие мыши, рыбы, насекомые и др.), присутствует в шуме машин.

Применяется в практике физических, физико-химических и биологических исследований, а также в технике для целей дефектоскопии, навигации, подводной связи и других процессов и в медицине - для диагностики и лечения.

Иридодиагностика.

Метод распознавания болезней человека путем осмотра радужной оболочки глаза. Основана на представлении о том, что некоторые заболевания внутренних органов сопровождаются характерными внешними изменениями определенных участков радужной оболочки.

Радиодиагностика.

Основана на использовании радиоактивных изотопов. Например, для диагностики и лечения заболеваний щитовидной железы применяют радиоактивные изотопы йода.

Лазер как физический прибор.

Лазер (оптический квантовый генератор) - усиление света в результате вынужденного излучения, источник оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии.

Лазеры получили широкое применение в научных исследованиях (в физике, химии, биологии и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (лазерная технология).

Плазменный скальпель.

Кровотечение – неприятная помеха при операциях, так как оно ухудшает обзор операционного поля и может привести к обескровливанию организма.

В помощь хирургу были созданы миниатюрные генераторы высокотемпературной плазмы.

Плазменный скальпель рассекает ткань, кости без крови. Раны после операции заживают быстрее.

Аппараты искусственного кровообращения.

В медицине широко применяются приборы и аппараты, способные заменить на время органы человека. В настоящее время медики используют:

Аппараты искусственного кровообращения Искусственное кровообращение - временное выключение сердца из кровообращения и осуществление циркуляции крови в организме с помощью аппарата искусственного кровообращения (АИК).

Физиотерапия.

Это область клинической медицины, изучающая лечебное действие естественных и искусственно созданных природных факторов на организм человека.

Физиотерапия является одним из старейших лечебных и профилактических направлений медицины, которое включает в себя множество разделов. Среди самых крупных разделов физиотерапии можно отметить:

Практически каждый медицинский инструмент, начиная от скальпеля и заканчивая сложной установкой для определения заболеваний в органах человека, работает или создан благодаря достижениям в области физики. Стоит отметить, что когда-то медицина и были одной и лишь со временем распались на отдельные ветви.

Важные соприкосновения наук

Созданные физиками аппараты позволяют проводить исследования любого рода. С помощью этих исследований врачи определяют болезнь и находят пути ее решения. Первым внушительным вкладом в , со стороны физики, было открытие Вильгельма Рентгена в области лучей, которые получили его имя. Сегодня благодаря рентгеновским лучам можно без труда проверить человека на ряд заболеваний, узнать подробную информацию о проблемах на уровне костей и многое другое.

Большой вклад в медицину дало открытие ультразвука. Ультразвук пропускается через тело человека и отражаясь от внутренних органов, позволяет создать макет организма, который позволяет проверить наличие заболеваний.

Стоит отметить, что после удаления опухоли вам придется пройти курс профилактических процедур, так как здоровье будет подорвано из-за действия лазерных лучей. Помните, что это технология далека от идеальной.
Одним из основных достижений нашего времени являются лазерные технологии, которые продуктивно используются . Примером может стать хирургия. Используя лазерные лучи, хирурги проводят очень сложные операции. Мощный пучок исходящий из лазера, когда прибор работает на нужной частоте, позволяет удалить злокачественную опухоль, для этого даже не нужно резать тело человека, как это было несколько лет назад.

В помощь хирургам созданы специальные скальпели на основе плазмы. Это образцы, которые работают с очень высокими температурами. При их использовании кровь моментально сворачивается, и хирург не испытывает неудобств из-за кровотечений. Доказано, что после таких скальпелей раны заживают быстрее.

При использовании плазменного скальпеля риск попадания в рану инфекции снижается до возможного минимума, при таких температурах микробы погибают мгновенно.

Электрические токи также используются в , например, небольшими импульсами ток узконаправлено подается в определенную точку. Так можно избавиться от опухолей, тромбов, и стимулировать ход крови.

Медицина и физика - это две области, постоянно окружающие нас в повседневности. Ежедневно влияние физики на развитие медицины только увеличивается, медицинская отрасль за счет этого модернизируется. Это приводит к тому, что многие болезни удается вылечить или остановить их распространение и контролировать.

Применение физики в медицине неоспоримо. Фактически каждый инструмент, используемый медиками, начиная со скальпеля и заканчивая сложнейшими установками для установления точного диагноза, функционирует или изготовлен благодаря достижениями в мире физики. Стоит отметить, что физика в медицине всегда играла важную роль и когда-то эти два направления были единой наукой.

Известное открытие

Многие аппараты, изготовленные физиками, позволяют проводить медикам обследования любого рода. Исследования позволяют ставить пациентам точные диагнозы и находить разные пути для выздоровления. Первым полномасштабным вкладом в медицину было открытие Вильгельма Рентгена в области лучей, которые теперь называются его именем. Рентгеновские лучи сегодня позволяют без особого труда определять тот или иной недуг у человека, узнать детально сведения на уровне костей и так далее.

Ультразвук и его влияние на медицину

Физика в медицину внесла свой вклад еще и благодаря открытию ультразвука. Что это такое? Ультразвук - это механические колебания, частота которых составляет больше двадцати тысяч герц. Частенько ультразвук еще называют дробящим звуком. С его помощью возможно смешивать масло и воду, формируя при этом нужную эмульсию.

Ультразвук пропускается через человеческое тело и отражается от внутренних органов, а это позволяет сформировать макет организма человека и установить имеющиеся заболевания. Ультразвук помогает готовить различные лекарственные вещества, применяется для разрыхления тканей и дробления почечных камней. Используется ультразвук для безосколочной резки и сварки костей. Активно применяется он и для дезинфекции хирургических приспособлений, ингаляции.

Именно ультразвук поспособствовал тому, что был создан эхолот - прибор для установления глубины моря под корабельным днищем. Также это явление поспособствовало тому, что в последнее время было создано огромное количество чувствительных приборов, фиксирующих отраженные тканями организма слабые сигналы ультразвука. Вот так и появилась биолокация. Биолокация позволяет обнаруживать опухоли, инородные тела в теле и тканях организма. Ультразвуковое исследование, или, другими словами, УЗИ, позволяет рассмотреть камни или песок в почках, желчном пузыре, зародыша в утробе матери и даже определить пол ребенка. УЗИ открывает большие перспективы для будущих родителей и ни один центр современной медицины не обходится без этого аппарата.

Лазер в медицине

Активно в современном мире применяются лазерные технологии. Ни один центр современной медицины уже не обойдется без них. Ярчайшим примером может стать хирургия. С помощью лазерных лучей хирургам удается проводить крайне сложные операции. Мощный поток света из лазера позволяет удалять злокачественные опухоли, а для этого не потребуется даже резать тело человека. Потребуется лишь подобрать нужную частоту. Многие изобретения физиков, использующиеся в медицине, прошли испытание временем и весьма успешно.

Уникальный инструмент для хирурга

Многие современные хирурги пользуются специальными скальпелями на основе плазмы. Это инструменты, функционирующие с высокими температурами. Если их применять на практике, то кровь будет сворачиваться в один миг, а значит, у хирурга не будет никаких неудобств из-за кровотечений. Также было доказано, что после применения подобных инструментов раны человека заживают в разы быстрее.

Плазменный скальпель также понижает риск попадания в рану инфекции до минимальной отметки, при такой температуре микробы просто погибают в один момент.

Электрический ток и медицина

В том, что роль физики в медицине велика, наверное, никто и не сомневается. Обычный электрический ток также повсеместно используется медиками. Небольшие импульсы узкой направленности в определенную точку позволяют избавиться от тромбов, опухолей, и при этом стимулируется приток крови. Опять же никого резать при этом не нужно.

Оптические приборы и их роль в медицине

Не знаете, как изучение физики поможет в медицине? Яркий тому пример - оптические приборы. Это и источники света, и линзы, и световоды, и микроскопы, и лазеры и так далее. Микроскоп еще в семнадцатом веке позволил ученым заглянуть в микромир и изучить клетки, самые простые организмы, строение тканей, крови и так далее. Благодаря физике в медицине используются оптические микроскопы, предоставляющие увеличение изображения до тысячи раз. Это главный инструмент биолога и медика, что исследует микромир человека.

Роль офтальмоскопа

В медицине используются самые разные оптические приборы. Например, все бывали на приеме у офтальмолога (врача-окулиста). Вначале он проверяет зрение при помощи специальной таблицы, а затем приглашает человека в темную комнату, где через глазное зеркало или офтальмоскоп рассматривает ваши глаза. Это наглядный пример применения физики в медицине. Офтальмоскоп - это сферическое вогнутое зеркало, в котором имеется маленькое отверстие в центральной части. Если лучи от лампы, что располагается сбоку, направить с помощью прибора в исследуемый глаз, то лучи пройдут до сетчатки, часть из них отразится и выйдет обратно. Отраженные лучи попадают через отверстие в зеркале в глаз врача, и он видит изображение глазного дна человека. Чтобы увеличить изображение, врач рассматривает глаз через собирающую линзу и использует ее в качестве лупы. Таким же образом врач-оториноларинголог рассматривает уши, нос и горло.

Появление эндоскопа и его роль в медицине

Основные задачи физики в медицине - это изобретение полезных приборов и технологий, что позволят эффективнее лечить людей. В конце двадцатого столетия физики создали уникальный прибор для медиков - эндоскоп, или «телевизор». Прибор позволяет увидеть изнутри трахеи, бронхи, пищевод, желудок человека. Состоит устройство из миниатюрного светового источника и смотровой трубки - сложного прибора из призм и линз. Для проведения исследования желудка пациенту потребуется заглотить эндоскоп, прибор будет продвигаться по пищеводу постепенно и окажется в желудке. Благодаря источнику света желудок будет освещен изнутри, а лучи, отраженные от стенок желудка, пройдут через смотровую трубку и выведутся в глаза доктора с помощью специальных световодов.

Световоды являют собой волоконные оптические трубки, у которых толщина соизмерима с толщиной человеческого волоса. Вот так световой сигнал полностью и без искажений передается в глаз врачу, формируя в нем изображения освещенного участка в желудке. Доктор сможет наблюдать и фотографировать язвы на стенках желудка, кровотечения. Исследование этим прибором называется эндоскопией.

Эндоскоп позволяет также ввести определенное количество лекарства в нужном участке и остановить таким образом кровотечение. С помощью эндоскопов также возможно облучать злокачественную опухоль.

Поговорим о давлении

Для чего нужна физика в медицине, уже ясно, ведь именно физика способствует появлению инновационных методик лечения в медицине. Когда-то инновацией было измерение кровяного давления. Как все происходит? На правую руку пациента доктор надевает манжету, что соединена с манометром, и эту манжету накачивают воздухом. К артерии прикладывается фонендоскоп, и при постепенном понижении давления в манжете прослушиваются удары звуков в фонендоскопе. Значение давления, при котором удары начинаются, называют верхним, а значение, при котором звуки прекращаются, - нижним. Нормальное давление у человека - 120 на 80. Этот способ измерения давления был предложен в 1905 году русским врачом Николаем Сергеевичем Коротковым. Он был участником Русско-японской войны и с тех пор, как он изобрел методику, слышимые в фонендоскопе удары именуются звуками Короткова. Природа этих звуков была неясна почти до конца двадцатого века, пока механиками не было допущено следующее пояснение: кровь движется по артерии под действием сердечных сокращений, а изменение давления крови распространяется по стенкам артерии в виде пульсовой волны.

Вначале доктор накачивает воздух в манжету до уровня, что превышает верхнее давление. Артерия под манжетой находится в сплющенном состоянии на протяжении всего цикла сердечных сокращений, после начинается постепенное выпускание воздуха из манжеты, и когда давление в ней становится равным верхней отметке, то артерия хлопком расправляется и пульсации кровотока приводят в колебание окружающие ткани. Врач слышит при этом звук и отмечает верхнее давление. При понижении давления в манжете совпадения все будут слышны в фонендоскопе, но как только давление в манжете достигнет нижней отметки, звуки прекратятся. Вот так врач регистрирует нижнюю границу.

Мысли можно «увидеть»?

Уже много лет ученых интересует, как устроен мозг человека и его работа. Сегодня исследователи имеют реальную возможность наблюдать на экране работу человеческого мозга, а также проследить за «течением мысли». Все стало возможным благодаря прекрасному прибору - томографу.

Оказалось, что, к примеру, при обработке зрительных данных увеличивается кровоток в затылочную зону мозга, а при обработке звуковых данных - в височные доли и так далее. Вот так один прибор позволяет ученым использовать принципиально новые возможности для изучения мозга человека. Сейчас томограммы широко применяются в медицине, они помогают диагностировать разные заболевания, неврозы.

Все для людей

Людей беспокоит их личное здоровье и благополучие близких им людей. В современном мире много разной техники, которую можно применять даже дома. К примеру, есть измерители нитратов в овощах и фруктах, глюкометры, дозиметры, электронные тонометры, метеостанции для дома и так далее. Да, не все вышеупомянутые приборы относятся непосредственно к медицине, но они помогают людям поддержать здоровье на должном уровне. Помочь человеку разобраться в устройстве приборов и их работе может школьная физика. В медицине она функционирует по тем же законам, что и в жизни.

Физика и медицина связаны между собой прочными узами, которые не разрушить.

Доктор биологических наук Ю. ПЕТРЕНКО.

Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

Наука и жизнь // Иллюстрации

Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

"НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

"Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

Доктор биологических наук Ю. ПЕТРЕНКО.