Что является источником информации в астрономии. Что такое астрономия и что она изучает? Новые течения и современные направления в астрономии

Некоторое время в школьной программе вообще не было такого предмета, как астрономия. Сейчас же эта дисциплина входит в обязательный учебный курс. Астрономию начинают изучать в разных школах по-разному. Иногда эта дисциплина впервые появляется в расписании у семиклассников, а в некоторых учебных заведениях ее преподают только в 11 классе. У школьников возникает вопрос о том, зачем нужно учить этот предмет, астрономию? Давайте узнаем, что это за наука и как знания о космосе могут пригодиться нам в жизни?

Понятие науки астрономии и предмета её изучения

Астрономия - это естественная наука о Вселенной. Предметом её изучения являются космические явления, процессы и объекты. Благодаря этой науке мы знаем, планеты, спутники, кометы, астероиды, метеориты. Также астрономические знания дают понятие о космосе, расположении небесных тел, их движении и образовании их систем.

Астрономия - это та наука, которая объясняет непонятные явления, составляющие неотъемлемую часть нашей жизни.

Зарождение и развитие астрономии

Самые первые представления человека о Вселенной были очень примитивными. Они основывались на религиозных убеждениях. Люди думали, что Земля - это центр мироздания, и что к твёрдому небу крепятся звёзды.

В дальнейшем развитии этой науки выделяют несколько этапов, каждый из которых называют астрономической революцией.

Первый такой переворот происходил в разное время в различных регионах мира. Приблизительное начало его осуществления - 1500 лет до нашей эры. Причиной первой революции стало развитие математических знаний, а результатом - возникновение сферической астрономии, астрометрии и точных календарей. Основное достижение этого периода - возникновение геоцентрической теории мира, ставшей итогом античных знаний.

Вторая революция в астрономии происходила в период с XVI по XVII век. Она была вызвана бурным развитием естественных наук и появлением новых знаний о природе. В этот период для объяснения астрономических процессов и явлений стали использоваться законы физики.

Главные достижения данного этапа развития астрономии - это обоснование и всемирного тяготения, изобретение оптического телескопа, открытие новых планет, астероидов, возникновение первых космологических гипотез.

Далее развитие науки о космосе ускорилось. Была изобретена новая техника, помогающая в астрономических исследованиях. Появившаяся возможность изучения химического состава небесных тел, подтвердила единство всего космического пространства.

Третья астрономическая революция происходила в 70-90-х годах ХХ столетия. Обусловлена она была прогрессом техники и технологии. На этом этапе появляется всеволновая, экспериментальная и корпускулярная астрономия. Это значит, что теперь все объекты космоса могут рассматриваться с помощью излучаемых ими электромагнитных волн, корпускулярного излучения.

Подразделы астрономии

Как мы видим, астрономия - это древняя наука, и в процессе долгого развития она приобрела разветвлённую, отраслевую структуру. Концептуальную основу классической астрономии составляют три её подраздела:

Помимо этих основных разделов существуют ещё:

  • астрофизика;
  • звёздная астрономия;
  • космогония;
  • космология.

Новые течения и современные направления в астрономии

В последнее время в связи с ускорением развития многих наук стали появляться прогрессивные отрасли, занимающиеся довольно специфическими исследованиями в области астрономии.

  • Гамма-астрономия исследует космические объекты по их излучению.
  • Рентгеновская астрономия аналогично предыдущей отрасли берёт за основу исследований рентгеновские лучи, которые исходят от небесных тел.

Основные понятия в астрономии

Что же является базовыми понятиями этой науки? Для того чтобы мы могли глубже изучать астрономию, нужно ознакомиться с основами.

Космос - это совокупность звёзд и межзвёздного пространства. По сути, это и есть Вселенная.

Планета - это специфическое небесное тело, которое вращается по орбите вокруг звезды. Такое название дают только тяжеловесным объектам, которые способны приобретать округлую форму под воздействием собственной гравитации.

Звезда - это массивный шарообразный объект, состоящий из газов, внутри которого происходят термоядерные реакции. Самой близкой и известной звездой для нас является Солнце.

Спутник в астрономии — это небесное тело, вращающееся вокруг объекта, который больше по размеру и удерживается гравитацией. Спутники бывают естественными - например Луна, а также искусственно созданными человеком и запущенными на орбиту для трансляции необходимой информации.

Галактика - это гравитационная связка звёзд, их скоплений, пыли, газа и тёмной материи. Все объекты галактики движутся относительно её центра.

Туманность в астрономии - это межзвёздное пространство, которое имеет характерное излучение и выделяется на общем фоне неба. До появления мощных телескопических приборов галактики часто путали с туманностями.

Склонение в астрономии - это характеристика, присущая каждому небесному телу. Так называют одну из двух координат, отражающую угловое расстояние от космического экватора.

Современная терминология науки астрономии

Инновационные методы изучения, о которых шла речь раньше, способствовали появлению новых астрономических терминов:

«Экзотические» объекты - источники оптического, рентгеновского, радио- и гамма- излучений в космосе.

Квазар - простыми словами, это звезда, обладающая сильным излучением. Её мощность может быть больше, чем у целой галактики. Такой объект мы видим в телескоп даже на огромном расстоянии.

Нейтронная звезда - последняя стадия эволюции небесного тела. Этот имеет невообразимую плотность. Для примера, вещество, из которого состоит нейтронная звезда, умещающееся в чайной ложке, будет весить 110 миллионов тонн.

Связь астрономии с другими науками

Астрономия - это наука, которая тесно связана с различными знаниями. В своих исследованиях она пользуется достижениями многих отраслей.

Проблематика распространения на Земле и в космосе химических элементов и их соединений - вот связующее звено между химией и астрономией. Кроме того, у учёных большой интерес вызывают исследования химических процессов, происходящих в космических просторах.

Земля может рассматриваться как одна из планет Солнечной системы - в этом выражается связь астрономии с географией и геофизикой. Рельеф земного шара, происходящие климатические и сезонные изменения погоды, потепления, ледниковые периоды - для изучения всех этих и ещё многих явлений географы используют астрономические знания.

Что стало основой для зарождения жизни? Это вопрос общий для биологии и астрономии. Общие труды двух указанных наук направлены на решение дилеммы возникновения живых организмов на планете Земля.

Ещё более тесная взаимосвязь астрономии с экологией, которая рассматривает проблему влияния космических процессов на биосферу Земли.

Способы наблюдений в астрономии

Основой для сбора информации в астрономии является наблюдение. Какими же способами можно наблюдать за процессами и объектами в космосе и какой инструментарий сейчас применяется для этих целей?

Невооружённым взглядом мы можем заметить на небосклоне несколько тысяч звёзд, но иногда кажется, что мы видим целый миллион или миллиард светящихся ярких точек. Это зрелище само по себе захватывающее, хотя с помощью увеличивающих приборов можно заметить больше интересного.

Даже обычный бинокль с возможностью восьмикратного увеличения даёт шанс увидеть несметное количество небесных тел, а обычные звёзды, которые мы видим и невооружённым взглядом, становятся намного ярче. Самый интересный объект для созерцания в бинокль - это Луна. Уже при небольшом увеличении можно увидеть некоторые кратеры.

Телескоп же даёт возможность увидеть не просто пятна морей на Луне. Наблюдая за звёздным небом с помощью этого прибора, можно изучить все особенности рельефа земного спутника. Также взору наблюдателя открываются невидимые до этого момента отдалённые галактики и туманности.

Созерцание звёздного неба в телескоп - не только очень увлекательное занятие, но иногда и достаточно полезное для науки. Многие астрономические открытия совершались не исследовательскими институтами, а простыми любителями.

Значение астрономии для человека и общества

Астрономия - это наука интересная и полезная одновременно. В наше время астрономические методы и инструменты используются для:


Вместо послесловия

Учитывая всё вышесказанное, усомниться в полезности и необходимости астрономии не сможет никто. Эта наука помогает лучше понять все аспекты существования человека. Она дала нам знания о и открыла доступ к интересной информации.

С помощью астрономических исследований мы можем детальнее изучить свою планету, а также постепенно продвигаться вглубь Вселенной, чтобы узнавать всё больше об окружающем нас пространстве.

Что такое астрономия?

Поднимая глаза к звездному небу в теплую летную ночь, каждый из нас задумывается - а что там, как все это устроено и кто мы в этой Вселенной? Мысли о бренности земного существования и необъятности космического, мысли о великом и малом, о том, что небо - это черный бархат, а звезды это капли молока, а днем, наверно, будут облака… Все это лирика, а ученые вглядываются в звездное небо совсем с другим подходом. И результаты их исследований поражают с каждым разом все более. Так чем же занимается наука астрономия? И зачем она нужна?

Что изучает наука Астрономия?

Астрономия - это наука, которая занимается изучением строения . Она изучает расположение, движение, физическую природу, происхождение и эволюцию небесных тел и систем. Фундаментальные свойства окружающей нас Вселенной также являются предметом изучения астрономии. Если более конкретно, то астрономия изучает Солнце и другие звезды, планеты и их спутники, черные дыры, галактики и туманности, квазары, астероиды и многое другое. Астрономия - это такая наука, которая призвана объяснить непонятные явления, происходящие во Вселенной и объясняющие нашу жизнь.

Когда появилась Астрономия?

Можно сказать, что астрономия появилась в тот момент, когда человек начал задавать себе вопросы об устройстве нашего мира. Первые представления о Вселенной были весьма примитивными, они исходили из религии. Уже с 6-4 в. До н.э. люди начали изучать звезды и их движение. С развитие математических знаний и физических исследований совершенствовались представления человека о Вселенной. Первая астрономическая революция произошла в 1500 г. до н.э. - именно тогда возникла сферическая астрономия, появились точные календари, а значит астрометрия. Жрецы Вавилона, которые составляли астрономические таблицы, календари племен майя, сведения, сохранившиеся со времен Древнего Китая и Древнего Египта - все это стояло у истоков астрономии. Впервые древнегреческие ученые, в частности Пифагор, предположили, что Земля имеет форму шара, Аристарх Самосский - что земля вращается вокруг . Основным достижением этого периода является возникновение геоцентрической теории мира. Существенный вклад в развитие астрономии внес Галилей.

Астрономия как хобби

Астрономия и космонавтика всегда интересовала и привлекала миллионы людей. Астрономов любителей в мире не счесть, часто именно благодаря ним сделано много астрономических открытий. Например, в 2009 году австралиец Энтони Уэсли, наблюдая за Юпитером, обнаружил следы падения космического тела на планету, предположительно это могла быть комета.

С помощью астрономии мы познаем законы природы и наблюдаем постепенную эволюцию нашего мира. Астрономия во многом определяет мировоззрение людей. В начале XXI века стали популярны космические темы о и пришельцах, к сожалению, очень часто весьма некомпетентные. Интерес журналистов, не разбирающихся в вопросах космоса, мнения ученых, основанные на неподтвержденных фактах, заставляют многих людей верить в псевдонаучные открытия.

Сегодня создано и создается огромное количество качественных научных видеофильмов о космосе, различных звездах, планетах и галактиках: великолепно выполненная графика и реальные съемки из космоса не оставят вас равнодушными и помогут лучше понять эту интересную науку - астрономию. Некоторые из таких фильмов вы можете посмотреть ниже.

Этимология

Структура астрономии как научной дисциплины

Внегалактическая астрономия: гравитационное линзирование . Видно несколько голубых петлеобразных объектов, которые являются многократными изображениями одной галактики, размноженными из-за эффекта гравитационной линзы от скопления жёлтых галактик возле центра фотографии. Линза создана гравитационным полем скопления, которое искривляет световые лучи, что ведёт к увеличению и искажению изображения более далёкого объекта.

Современная астрономия делится на ряд разделов, которые тесно связаны между собой, поэтому разделение астрономии в некоторой мере условно. Главнейшими разделами астрономии являются:

  • Астрометрия - изучает видимые положения и движения светил. Раньше роль астрометрии состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (сейчас для этого используются другие способы). Современная астрометрия состоит из:
    • фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, - величин, позволяющих учитывать закономерные изменения координат светил;
    • сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;
  • Теоретическая астрономия даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).
  • Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией .

  • Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

  • Звёздная астрономия изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

  • Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.
  • Космология изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Курс общей астрономии содержит систематическое изложение сведений об основных методах и главнейших результатах, полученных различными разделами астрономии.

Одним из новых, сформировавшихся только во второй половине XX века , направлений является археоастрономия , которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли .

Звёздная астрономия

Планетарная туманность Муравья - Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.

Почти все элементы, более тяжелые чем водород и гелий , образуются в звёздах.

Предметы астрономии

  • Эволюция галактик
  • Задачи астрономии

    Основными задачами астрономии являются :

    1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.
    2. Изучение строения небесных тел, исследование химического состава и физических свойств (плотности, температуры и т. п.) вещества в них.
    3. Решение проблем происхождения и развития отдельных небесных тел и образуемых ими систем.
    4. Изучение наиболее общих свойств Вселенной , построение теории наблюдаемой части Вселенной - Метагалактики .

    Решение этих задач требует создания эффективных методов исследования - как теоретических, так и практических. Первая задача решается путём длительных наблюдений, начатых ещё в глубокой древности, а также на основе законов механики , известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для сравнительно близких к Земле небесных тел: Луны , Солнца , планет , астероидов и т. д.

    Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии . Изучение физических свойств небесных тел началось во второй половине XIX века , а основных проблем - лишь в последние годы.

    Третья задача требует накопления наблюдаемого материала. В настоящее время таких данных ещё недостаточно для точного описания процесса происхождения и развития небесных тел и их систем. Поэтому знания в этой области ограничиваются только общими соображениями и рядом более или менее правдоподобных гипотез.

    Четвёртая задача является самой масштабной и самой сложной. Практика показывает, что для её решения уже недостаточно существующих физических теорий. Необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности , температуры , давления . Для решения этой задачи требуются наблюдательные данные в областях Вселенной , находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран, в том числе и России .

    История астрономии

    Ещё в глубокой древности люди заметили взаимосвязь движения небесных светил по небосводу и периодических изменений погоды. Астрономия тогда была основательно перемешана с астрологией . Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

    Астрономия - одна из старейших наук, которая возникла из практических потребностей человечества. По расположению звезд и созвездий первобытные земледельцы определяли наступления времен года. Кочевые племена ориентировались по Солнцу и звездам. Необходимость в летоисчислении привела к созданию календаря. Есть доказательства, что еще доисторические люди знали об основных явлениях, связанных с восходом и заходом Солнца, Луны и некоторых звезд. Периодическая повторяемость затмений Солнца и Луны была известна уже очень давно. Среди древнейших письменных источников встречаются описания астрономических явлений, а также примитивные расчетные схемы для предсказания времени восхода и захода ярких небесных тел и методы отсчета времени и ведения календаря. Астрономия успешно развивалась в Древнем Вавилоне, Египте, Китае и Индии. В китайской летописи описывается затмение Солнца, которое состоялось в 3-м тысячелетии до н. е. Теории, которые на основе развитых арифметики и геометрии объясняли и предсказывали движение Солнца, Луны и ярких планет, были созданы в странах Средиземноморья в последние века дохристианской эры и вместе с простыми, но эффективными приборами, служили практическим целям вплоть до эпохи Возрождения.

    Особенно большого развития достигла астрономия в Древней Греции. Пифагор впервые пришел к выводу, что Земля имеет шарообразную форму, а Аристарх Самосский высказал предположение, что Земля вращается вокруг Солнца. Гиппарх во 2 в. до н. е. составил один из первых звездных каталогов. В произведении Птолемея «Альмагест », написанном в 2 ст. н. э., изложены т. н. геоцентрическую систему мира, которая была общепринятой на протяжении почти полутора тысяч лет. В средневековье астрономия достигла значительного развития в странах Востока. В 15 в. Улугбек построил вблизи Самарканда обсерваторию с точными в то время инструментами. Здесь был составлен первый после Гиппарха каталог звёзд. С 16 в. начинается развитие астрономии в Европе. Новые требования выдвигались в связи с развитием торговли и мореплавания и зарождением промышленности, способствовали освобождению науки от влияния религии и привели к ряду крупных открытий.

    Рождение современной астрономии связывают с отказом от геоцентрической системы мира Птолемея (II век) и заменой ее гелиоцентрической системой Николая Коперника (середина XVI века), с началом исследований небесных тел с помощью телескопа (Галилей , начало XVII века) ​​и открытием закона всемирного притяжения (Исаак Ньютон , конец XVII века). XVIII-XIX века были для астрономии периодом накопления сведений и знаний о Солнечной системе, нашу Галактику и физическую природу звезд, Солнца, планет и других космических тел. Появление крупных телескопов и осуществления систематических наблюдений привели к открытию, что Солнце входит в состав огромной дискообразной системы, состоящей из многих миллиардов звезд - галактики . В начале XX века астрономы обнаружили, что эта система является одной из миллионов подобных ей галактик. Открытие других галактик стало толчком для развития внегалактической астрономии. Исследование спектров галактик позволило Эдвину Хабблу в 1929 году выявить явление «разбегания галактик», которое впоследствии получило объяснения на основе общего расширения Вселенной.

    В XX веке астрономия разделилась на две основные ветви: наблюдательный и теоретическую. Наблюдательная астрономия сосредоточена на наблюдениях небесных тел, которые затем анализируют с помощью основных законов физики. Теоретическая астрономия ориентирована на разработку моделей (аналитических или компьютерных) для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательный астрономию применяют для подтверждения теоретических выводов и гипотез.

    Научно-техническая революция XX века имела чрезвычайно большое влияние на развитие астрономии в целом и особенно астрофизики. Создание оптических и радиотелескопов с высоким разрешением, применение ракет и искусственных спутников Земли для внеатмосферных астрономических наблюдений привели к открытию новых видов космических тел: радиогалактик, квазаров, пульсаров, источников рентгеновского излучения и т. д.. Были разработаны основы теории эволюции звезд и космогонии Солнечной системы. Достижением астрофизики XX века стала релятивистская космология - теория эволюции Вселенной в целом.

    2009 год был объявлен ООН Международным годом астрономии (IYA2009). Основной упор делается на повышении общественной заинтересованности и понимании астрономии. Это одна из немногих наук, где непрофессионалы все еще ​​могут играть активную роль. Любительская астрономия внесла свой ​​вклад в ряд важных астрономических открытий.

    Астрономические наблюдения

    В астрономии информация в основном получается от выявления и анализа видимого света и других спектров электромагнитного излучения в космосе . Астрономические наблюдения могут быть разделены в соответствии с области электромагнитного спектра, в которой проводятся измерения. Некоторые части спектра можно наблюдать с Земли (то есть ее поверхности), а другие наблюдения ведутся только на больших высотах или в космосе (в космических аппаратах на орбите Земли). Подробные сведения об этих группах исследований приведены ниже.

    Оптическая астрономия

    Исторически оптическая астрономия (которую еще называют астрономией видимого света) является древнейшей формой исследования космоса - астрономии . Оптические изображение сначала были нарисованы от руки. В конце XIX века и большей части ХХ века, исследования осуществлялись на основе изображений, которые получали с помощью фотографий, сделанных на фотографическом оборудовании. Современные изображения получают с использованием цифровых детекторов, в частности детекторы на основе приборов с зарядовой связью (ПЗС). Хотя видимый свет охватывает диапазон примерно от 4000 Ǻ до 7000 Ǻ (400-700 нанометров) , применяемого оборудования в этом диапазоне, можно применить и для исследования близких ему ультрафиолетового и инфракрасного дапазонов.

    Инфракрасная астрономия

    Инфракрасная астрономия касается исследований, выявления и анализа инфракрасного излучения в космосе. Хотя длина волны его близка к длине волны видимого света, инфракрасное излучение сильно поглощается атмосферой, кроме того, атмосфера Земли имеет значительное инфракрасное излучение. Поэтому обсерватории для изучения инфракрасного излучения должны быть расположены на высоких и сухих местах или в космосе. Инфракрасный спектр полезен для изучения объектов, которые являются слишком холодными, чтобы излучать видимый свет таких объектов, как планеты и вокруг звездные диски. Инфракрасные лучи могут проходить через облака пыли, поглощающие видимый свет, что позволяет наблюдать молодые звезды в молекулярных облаках и ядер галактик . Некоторые молекулы мощно излучают в инфракрасном диапазоне, и это может быть использовано для изучения химических процессов в космосе (например, для выявления воды в кометах) .

    Ультрафиолетовая астрономия

    Ультрафиолетовая астрономия в основном применяется для детального наблюдения в ультрафиолетовых длинах волн примерно от 100 до 3200 Ǻ (от 10 до 320 нанометров) . Свет на этих длинах волн поглощается атмосферой Земли, поэтому исследование этого диапазона выполняют из верхних слоев атмосферы или из космоса. Ультрафиолетовая астрономия лучше подходит для изучения горячих звезд (ОФ звезды), поскольку основная часть излучения приходится именно на этот диапазон. Сюда относятся исследования голубых звезд в других галактиках и планетарных туманностей, остатков сверхновых, активных галактических ядер. Однако ультрафиолетовое излучение легко поглощается межзвездной пылью, поэтому во время измерения следует делать поправку на наличие последней в космической среде.

    Радиоастрономия

    Сверхбольшой массив радиотелескопов (англ. Very Large Array) в Сирокко, Нью-Мексико, США

    Радиоастрономия - это исследование излучения с длиной волны, большей чем один миллиметр (примерно) . Радиоастрономия отличается от большинства других видов астрономических наблюдений тем, что исследуемые радиоволны можно рассматривать именно как волны, а не как отдельные фотоны. Итак, можно измерить как амплитуду, так и фазу радиоволны, а это не так легко сделать на диапазонах коротких волн .

    Хотя некоторые радиоволны излучаются астрономическими объектами в виде теплового излучения, большинство радиоизлучения, наблюдаемого с Земли, является по происхождению синхротронным излучением, которое возникает, когда электроны движутся в магнитном поле . Кроме того, некоторые спектральные линии образуются межзвездным газом, в частности спектральная линия нейтрального водорода длиной 21 см .

    В радиодиапазоне наблюдается широкое разнообразие космических объектов, в частности сверхновые звезды, межзвездный газ, пульсары и активные ядра галактик .

    Рентгеновская астрономия

    Рентгеновская астрономия изучает астрономические объекты в рентгеновском диапазоне. Обычно объекты излучают рентгеновское излучение благодаря:

    Поскольку рентгеновское излучение поглощается атмосферой Земли, рентгеновские наблюдения основном выполняют из орбитальных станций, ракет или космических кораблей. К известным рентгеновских источников в космосе относятся: рентгеновские двойные звезды, пульсары, остатки сверхновых, эллиптические галактики, скопления галактик, а также активные ядра галактик .

    Гамма-астрономия

    Астрономические гамма-лучи появляются в исследованиях астрономических объектов с короткой длиной волны электромагнитного спектра. Гамма-лучи могут наблюдаться непосредственно такими спутниками, как Телескоп Комптон или специализированные телескопы, которые называются атмосферные телескопы Черенкова. Эти телескопы фактически не измеряют гамма-лучи непосредственно, а фиксируют вспышки видимого света, образующиеся при поглощении гамма-лучей атмосферой Земли, вследствие различных физических процессов, происходящих с заряженными частицами, которые возникают при поглощении, вроде эффекта Комптона или черенковского излучения .

    Большинство источников гамма-излучения является фактически источниками гамма-всплесков, которые излучают только гамма-лучи в течение короткого промежутка времени от нескольких миллисекунд до тысячи секунд, прежде чем развеяться в пространстве космоса. Только 10% от источников гамма-излучения не является переходным источниками. Стационарные гамма-источники включают пульсары, нейтронные звезды и кандидаты на черные дыры в активных галактических ядрах .

    Астрономия полей, которые не основываются на электромагнитном спектре

    К Земле, исходя из очень больших расстояний, попадает не только электромагнитное излучение, но и другие типы элементарных частиц.

    Новым направлением в разновидности методов астрономии может стать гравитационно-волновая астрономия, которая стремится использовать детекторы гравитационных волн для сбора данных наблюдений о компактные объекты. Несколько обсерваторий уже построено, например, лазерный интерферометр гравитационной обсерватории LIGO, но гравитационные волны очень трудно обнаружить, и они до сих пор остаются неуловимыми .

    Планетарная астрономия использует также непосредственное изучение с помощью космических кораблей и исследовательских миссий типа «по образцам и обратно» (Sample Return). К ним относятся полеты миссий с использованием датчиков; спускных аппаратов, которые могут проводить эксперименты на поверхности объектов, а также позволяют осуществлять удаленное зондирование материалов или объектов и миссии доставки на Землю образцов для прямых лабораторных исследований.

    Астрометрия и небесная механика

    Один из старейших подразделов астрономии, занимается измеряниями положение небесных объектов. Эта отрасль астрономии называется астрометрией. Исторически точные знания о расположении Солнца, Луны, планет и звезд играют чрезвычайно важную роль в навигации. Тщательные измерения расположения планет привели к глубокому пониманию гравитационных возмущений, что позволило с высокой точностью определять их расположение в прошлом и предусматривать на будущее. Эта отрасль известна как небесная механика. Сейчас отслеживания околоземных объектов позволяет прогнозирования сближения с ними, а также возможные столкновения различных объектов с Землей .

    Измерения звездных параллаксов ближайших звёзд является фундаментом для определения расстояний в дальнем космосе, который применяется для измерения масштабов Вселенной. Эти измерения обеспечили основу для определения свойств отдаленных звезд; свойства могут быть сопоставлены с соседними звёздами. Измерения лучевых скоростей и собственных движений небесных тел позволяет исследовать кинематику этих систем в нашей галактике. Астрометрические результаты могут использоваться для измерения распределения темной материи в галактике .

    В 1990-х годах астрометрические методы измерения звездных колебаний были применены для обнаружения крупных внесолнечных планет (планет на орбитах соседних звёзд) .

    Внеатмосферная астрономия

    Исследования с помощью космической техники занимают особое место среди методов изучения небесных тел и космической среды. Начало было положено запуском в СССР в 1957 году первого в мире искусственного спутника Земли. Космические аппараты позволили проводить исследования во всех диапазонах длин волн электромагнитного излучения. Поэтому современную астрономию часто называют всеволновой. Внеатмосферные наблюдения позволяют принимать в космосе излучения, которые поглощает или очень меняет земная атмосфера: радиоизлучения некоторых длин волн, не доходят до Земли, а также корпускулярные излучения Солнца и других тел. Исследование этих, ранее недоступных видов излучения звезд и туманностей, межпланетной и межзвездной среды очень обогатили наши знания о физических процессах Вселенной. В частности, было открыто неизвестные ранее источники рентгеновского излучения - рентгеновские пульсары. Много информации о природе отдаленных от нас тел и их систем также одержана благодаря исследованиям, выполненным с помощью установленных спектрографов на различных космических аппаратах.

    Теоретическая астрономия

    Основная статья: Теоретическая астрономия

    Астрономы-теоретики используют широкий спектр инструментов, которые включают аналитические модели (например, политропы ждя приближенныя поведения звезд) и расчеты численных моделирований. Каждый из методов имеет свои преимущества. Аналитическая модель процесса, как правило, лучше дает понять суть того, почему это (что-то) происходит. Численные модели могут свидетельствовать о наличии явлений и эффектов, которых, вероятно, иначе не было бы видно .

    Теоретики в области астрономии стремятся создавать теоретические модели и выяснить в исследованиях последствия этих моделирований. Это позволяет наблюдателям искать данные, которые могут опровергнуть модель или помогает в выборе между несколькими альтернативными или противоречивыми моделями. Теоретики также экспериментируют в создании или видоизменению модели с учетом новых данных. В случае несоответствия общая тенденция состоит в попытке сделать минимальными изменения в модели и откорректировать результат. В некоторых случаях большое количество противоречивых данных со временем может привести к полному отказу от модели.

    Темы, которые изучают теоретические астрономы: звездная динамика и эволюция галактик; крупномасштабная структура Вселенной; происхождения космических лучей, общая теория относительности и физическая космология, в частности космологии звезд и астрофизика. Астрофизические относительности служат как инструмент для оценки свойств крупномасштабных структур, для которых гравитация играет значительную роль в физических явлениях и основой для исследований черных дыр, астрофизики и изучения гравитационных волн. Некоторые широко приняты и изучены теории и модели в астрономии, теперь включены в Lambda-CDM модели, Большой Взрыв, расширение космоса, темной материи и фундаментальные теории физики.

    Любительская астрономия

    Астрономия является одной из наук, в которой вклад любителей может быть значительным . Вообще все астрономы-любители наблюдают различные небесные объекты и явления в большем объеме, чем ученые, хотя их технический ресурс намного меньше возможности государственных институтов, иногда оборудование они строят себе самостоятельно (как это было еще 2 века назад). Наконец большинство ученых вышли именно из этой среды. Главные объекты наблюдений астрономов-любителей: Луна, планеты, звезды, кометы, метеорные потоки и различные объекты глубокого неба, а именно: звездные скопления, галактики и туманности. Одна из ветвей любительской астрономии, любительская астрофотография, предусматривает фотофиксацию участков ночного неба. Многие любители хотели бы специализироваться в наблюдении отдельных предметов, типов объектов, или типов событий, которые интересуют их .

    Астрономы-любители и в дальнейшем продолжают вносить свой ​​вклад в астрономию. Действительно, она является одной из немногих дисциплин, где вклад любителей может быть значительным. Довольно часто они проводят точечные измерения, которые используются для уточнения орбит малых планет, отчасти они также проявляют кометы, выполняют регулярные наблюдения переменных звезд. А достижения в области цифровых технологий позволило любителям добиться впечатляющего прогресса в области астрофотографии .

    См. также

    Коды в системах классификации знаний

    Примечания

    1. , с. 5
    2. Марочник Л.С. Физика космоса . - 1986.
    3. Electromagnetic Spectrum . NASA. Архивировано из первоисточника 5 сентября 2006. Проверено 8 сентября 2006.
    4. Moore, P. Philip"s Atlas of the Universe. - Great Britain: George Philis Limited, 1997. - ISBN 0-540-07465-9
    5. Staff . Why infrared astronomy is a hot topic , ESA (11 September 2003). Архивировано из первоисточника 30 июля 2012. Проверено 11 августа 2008.
    6. Infrared Spectroscopy – An Overview , NASA/IPAC . Архивировано из первоисточника 5 августа 2012. Проверено 11 августа 2008.
    7. Allen"s Astrophysical Quantities / Cox, A. N.. - New York: Springer-Verlag, 2000. - P. 124. - ISBN 0-387-98746-0
    8. Penston, Margaret J. The electromagnetic spectrum . Particle Physics and Astronomy Research Council (14 August 2002). Архивировано из первоисточника 8 сентября 2012. Проверено 17 августа 2006.
    9. Gaisser Thomas K. Cosmic Rays and Particle Physics. - Cambridge University Press, 1990. - P. 1–2. - ISBN 0-521-33931-6
    10. Tammann, G. A.; Thielemann, F. K.; Trautmann, D. Opening new windows in observing the Universe . Europhysics News (2003). Архивировано из первоисточника 6 сентября 2012. Проверено 3 февраля 2010.
    11. Calvert, James B. Celestial Mechanics . University of Denver (28 March 2003). Архивировано из первоисточника 7 сентября 2006. Проверено 21 августа 2006.
    12. Hall of Precision Astrometry . University of Virginia Department of Astronomy. Архивировано из первоисточника 26 августа 2006. Проверено 10 августа 2006.
    13. Wolszczan, A.; Frail, D. A. (1992). «A planetary system around the millisecond pulsar PSR1257+12». Nature 355 (6356): 145–147. DOI :10.1038/355145a0 . Bibcode : 1992Natur.355..145W .
    14. Roth, H. (1932). «A Slowly Contracting or Expanding Fluid Sphere and its Stability». Physical Review 39 (3): 525–529. DOI :10.1103/PhysRev.39.525 . Bibcode : 1932PhRv...39..525R .
    15. Eddington A.S. Internal Constitution of the Stars . - Cambridge University Press, 1926. - ISBN 978-0-521-33708-3
    16. Mims III, Forrest M. (1999). «Amateur Science-Strong Tradition, Bright Future». Science 284 (5411): 55–56. DOI :10.1126/science.284.5411.55 . Bibcode : 1999Sci...284...55M . “Astronomy has traditionally been among the most fertile fields for serious amateurs [...]”
    17. The Americal Meteor Society . Архивировано из первоисточника 22 августа 2006. Проверено 24 августа 2006.
    18. Lodriguss, Jerry Catching the Light: Astrophotography . Архивировано из первоисточника 1 сентября 2006. Проверено 24 августа 2006.
    19. Ghigo, F. Karl Jansky and the Discovery of Cosmic Radio Waves . National Radio Astronomy Observatory (7 February 2006). Архивировано из первоисточника 31 августа 2006. Проверено 24 августа 2006.
    20. Cambridge Amateur Radio Astronomers . Архивировано из первоисточника 24 мая 2012. Проверено 24 августа 2006.
    21. The International Occultation Timing Association . Архивировано из первоисточника 21 августа 2006. Проверено 24 августа 2006.
    22. Edgar Wilson Award . IAU Central Bureau for Astronomical Telegrams. Архивировано из первоисточника 24 октября 2010. Проверено 24 октября 2010.

    1. Что изучает астрономия. Связь астрономии с другими науками, ее значение

    Астрономия * - наука, изучающая движение, строение, происхождение и развитие небесных тел и их систем. Накопленные ею знания применяются для практических нужд человечества.

    * (Это слово происходит от двух греческих слов: астрон - светило, звезда иномос - закон. )

    Астрономия является одной из древнейших наук, она возникла на основе практических потребностей человека и развивалась вместе с ними. Элементарные астрономические сведения были известны уже тысячи лет назад в Вавилоне, Египте, Китае и применялись народами этих стран для измерения времени и ориентировки по сторонам горизонта.

    И в наше время астрономия используется для определения точного времени и географических координат (в навигации, авиации, космонавтике, геодезии, картографии). Астрономия помогает исследованию и освоению космического пространства, развитию космонавтики и изучению нашей планеты из космоса. Но этим далеко не исчерпываются решаемые ею задачи.

    Наша Земля является частью Вселенной. Луна и Солнце вызывают на ней приливы и отливы. Солнечное излучение и его изменения влияют на процессы в земной атмосфере и на жизнедеятельность организмов. Механизмы влияния различных космических тел на Землю также изучает астрономия.

    Курс астрономии завершает физико-математическое и естественнонаучное образование, получаемое вами в школе.

    Современная астрономия тесно связана с математикой и физикой, с биологией и химией, с географией, геологией и космонавтикой. Используя достижения других наук, она в свою очередь обогащает их, стимулирует их развитие, выдвигая перед ними все новые задачи.

    Изучая астрономию, необходимо обращать внимание на то, какие сведения являются достоверными фактами, а какие - научными предположениями, которые со временем могут измениться.

    Астрономия изучает в космосе вещество в таких состояниях и масштабах, какие неосуществимы в лабораториях, и этим расширяет физическую картину мира, наши представления о материи. Все это важно для развития диалектико-материалистического представления о природе.

    Предвычисляя наступление затмений Солнца и Луны, появление комет, показывая возможность естественнонаучного объяснения происхождения и эволюции Земли и других небесных тел, астрономия подтверждает, что предела человеческому познанию нет.

    В прошлом веке один из философов-идеалистов, доказывая ограниченность человеческого познания, утверждал, что, хотя люди и сумели измерить расстояния до некоторых светил, они никогда не смогут определить химический состав звезд. Однако вскоре был открыт спектральный анализ, и астрономы не только установили химический состав атмосфер звезд, но и определили их температуру. Несостоятельным оказались и многие другие попытки указать границы человеческого познания. Так, ученые сначала теоретически оценили температуру лунной поверхности, затем измерили ее с Земли при помощи термоэлемента и радиометодов, потом эти данные были подтверждены приборами автоматических станций, созданных и посланных людьми на Луну.

    2. Масштабы Вселенной

    Вы уже знаете, что естественный спутник Земли - Луна является ближайшим к нам небесным телом, что наша планета вместе с другими большими и малыми планетами входит в состав Солнечной системы, что все планеты обращаются вокруг Солнца. В свою очередь Солнце, как и все звезды, видимые на небе, входит в состав нашей звездной системы - Галактики. Размеры Галактики так велики, что даже свет, распространяющийся со скоростью 300 000 км/с, проходит расстояние от одного ее края до другого за сто тысяч лет. Подобных галактик во Вселенной множество, но они очень далеки, и мы невооруженным глазом можем видеть лишь одну из них - туманность Андромеды.

    Расстояния между отдельными галактиками обычно в десятки раз превосходят их размеры. Чтобы яснее представить себе масштабы Вселенной, внимательно изучите рисунок 1.

    Звезды являются наиболее распространенным типом небесных тел во Вселенной, а галактики и их скопления - ее основными структурными единицами. Пространство между звездами в галактиках и между галактиками заполнено очень разреженной материей в виде газа, пыли, элементарных частиц, электромагнитного излучения, гравитационных и магнитных полей.

    Изучая законы движения, строение, происхождение и развитие небесных тел и их систем, астрономия дает нам представление о строении и развитии Вселенной в целом.

    Проникнуть в глубины Вселенной, изучить физическую природу небесных тел можно при помощи телескопов и других приборов, которыми располагает современная астрономия благодаря успехам, достигнутым в различных областях науки и техники.