Сравнительный анализ эффективности простейших систем массового обслуживания. Структура и показатели эффективности систем массового обслуживания Основные характеристики CМОи показатели их эффективности

Теория СМО посвящена разработке методов анализа, проектирования и рациональной организации систем, относящихся к различным областям деятельности, таким как связь, вычислительная техника, торговля, транспорт, военное дело. Несмотря на все свое разнообразие, приведенные системы обладают рядом типичных свойств, а именно.

  • СМО (системы массового обслуживания) - это модели систем , в которые в случайные моменты времени извне или изнутри поступают заявки (требования). Они должны тем или иным образом быть обслужены системой. Длительность обслуживания чаще всего случайна.
  • СМО представляет собой совокупность обслуживающего оборудования и персонала при соответствующей организации процесса обслуживания.
  • Задать СМО – это значит задать ее структуру и статистические характеристики последовательности поступления заявок и последовательности их обслуживания.
Задача анализа СМО заключается в определении ряда показателей ее эффективности, которые можно разделить на следующие группы:
  • показатели, характеризующие систему в целом: число n занятых каналов обслуживания, число обслуженных (λ b ), ожидающих обслуживание или получивших отказ заявок (λ c ) в единицу времени и т.д.;
  • вероятностные характеристики : вероятность того, что заявка будет обслужена (P обс) или получит отказ в обслуживании (P отк), что все приборы свободны (p 0) или определенное число их занято (p k ), вероятность наличия очереди и т.д.;
  • экономические показатели : стоимость потерь, связанных с уходом не обслуженной по тем или иным причинам заявки из системы, экономический эффект, полученный в результате обслуживания заявки, и т.д.
Часть технических показателей (первые две группы) характеризуют систему с точки зрения потребителей , другая часть – характеризует систему с точки зрения её эксплуатационных свойств . Часто выбор перечисленных показателей, может улучшать эксплуатационные свойства системы, но ухудшать систему с точки зрения потребителей и наоборот. Использование экономических показателей позволяет разрешить указанное противоречие и оптимизировать систему с учетом обеих точек зрения.
В ходе выполнения домашней контрольной работы изучаются простейшие СМО. Это системы разомкнутого типа, бесконечный источник заявок в систему не входит. Входной поток заявок, потоки обслуживания и ожидания этих систем являются простейшими. Приоритеты отсутствуют. Системы однофазные.

Многоканальная система с отказами

Система состоит из одного узла обслуживания, содержащего n каналов обслуживания, каждый из которых может обслуживать только одну заявку.
Все каналы обслуживания одинаковой производительности и для модели системы неразличимы. Если заявка поступила в систему и застала хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка покидает систему не обслуженной.

Смешанные системы

  1. Система с ограничением на длину очереди .
    Состоит из накопителя (очереди) и узла обслуживания. Заявка покидает очередь и уходит из системы, если в накопителе к моменту ее появления уже находятся m заявок (m – максимально возможноечисло мест в очереди). Если заявка поступила в систему и застала, хотя бы один канал свободным, она мгновенно начинает обслуживаться. Если в момент поступления заявки в систему все каналы заняты, то заявка не покидает систему, а занимает место в очереди. Заявка покидает систему не обслуженной, если к моменту её поступления в систему заняты все каналы обслуживания и все места в очереди.
    Для каждой системы определяется дисциплина очереди. Это система правил, определяющих порядок поступления заявок из очереди в узел обслуживания. Если все заявки и каналы обслуживания равнозначны, то чаще всего действует правило «кто раньше пришел, тот раньше обслуживается».
  2. Система с ограничением на длительность пребывания заявки в очереди .
    Состоит из накопителя (очереди) и узла обслуживания. От предыдущей системы она отличается тем, что заявка, поступившая в накопитель (очередь), может ожидать начала обслуживания лишь ограниченное время Т ож (чаще всего это случайная величина). Если её время Т ож истекло, то заявка покидает очередь и уходит из системы не обслуженной.

Математическое описание СМО

СМО рассматриваются как некоторые физические системы с дискретными состояниями х 0 , х 1 , …, х n , функционирующие при непрерывном времени t . Число состояний n может быть конечным или счетным (n → ∞). Система может переходить из одного состояния х i (i= 1, 2, … , n) в другое х j (j= 0, 1, … ,n) в произвольный момент времени t . Чтобы показать правила таких переходов, используют схему, называемую графом состояний . Для типов перечисленных выше систем графы состояний образуют цепь, в которой каждое состояние (кроме крайних) связано прямой и обратной связью с двумя соседними состояниями. Это схема гибели и размножения.
Переходы из состояния в состояние происходят в случайные моменты времени. Удобно считать, что эти переходы происходят в результате действия каких-то потоков (потоков входных заявок, отказов в обслуживании заявок, потока восстановления приборов и т.д.). Если все потоки простейшие, то протекающий в системе случайный процесс с дискретным состоянием и непрерывным временем будет марковским.
Поток событий - это последовательность однотипных событий, протекающих в случайные моменты времени. Его можно рассматривать как последовательность случайных моментов времени t 1 , t 2 , … появления событий.
Простейшим называют поток, обладающий следующими свойствами:
  • Ординарность . События следуют по одиночке (противоположность потоку, где события следуют группами).
  • Стационарность . Вероятность попадания заданного числа событий на интервал времени Т зависит только от длины интервала и не зависит от того, где на оси времени находиться этот интервал.
  • Отсутствие последействия . Для двух непересекающихся интервалов времени τ 1 и τ 2 число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой интервал.
В простейшем потоке интервалы времени Т 1 , Т 2 ,… между моментами t 1 , t 2 , … появления событий случайны, независимы между собой и имеют показательное распределение вероятностей f(t)=λe -λt , t≥0, λ=const, где λ - параметр показательного распределения, являющийся одновременно интенсивностью потока и представляющий собой среднее число событий, происходящих в единицу времени. Таким образом, t =M[T]=1/λ.
Марковские случайные события описываются обыкновенными дифференциальными уравнениями . Переменными в них служат вероятности состояний р 0 (t), p 1 (t),…,p n (t) .
Для очень больших моментов времени функционирования систем (теоретически при t → ∞) в простейших системах (системы, все потоки в которых – простейшие, а граф – схема гибели и размножения) наблюдается установившийся, или стационарный режим работы. В этом режиме система будет изменять свое состояние, но вероятности этих состояний (финальные вероятности ) р к , к= 1, 2 ,…, n, не зависят от времени и могут рассматриваться как среднее относительное время пребывания системы в соответствующем состоянии.

2 - очередь - требования, ожидающие обслуживания.

Очередь оценивается средней длиной г - числом объектов или клиентов, ожи­дающих обслуживания.

3 - обслуживающие аппараты (каналы обслуживания) - совокупность рабочих мест, исполнителей, оборудования, осуществляющих обслуживание требований по определенной технологии.

4 - выходящий поток требований со"(г) - поток требований, прошедших СМО. В общем случае выходящий поток может состоять из требований обслуженных и необслуженных. Пример необслуженных требований: отсутствие нужной детали для автомобиля, находящегося в ремонте.

5 - замыкание (возможное) СМО - состояние системы, при котором входящий поток требований зависит от выходящего.

На автомобильном транспорте после обслуживания требований (ТО, ремонт) автомобиль должен быть технически исправным.

Системы массового обслуживания классифицируются следующим образом.

1. По ограничениям на длину очереди:

СМО с потерями - требование покидает СМО необслуженным, если в момент его поступления все каналы заняты;

СМО без потерь - требование занимает очередь, даже если все каналы заняты;

СМО с ограничениями по длине очереди т или времени ожидания: если су­ществует ограничение на очередь, то вновь поступившее (/?/ + 1)-е требование выбывает из системы необслуженным (например, ограниченная емкость на­копительной площадки перед АЗС).

2. По количеству каналов обслуживания п:

Одноканальные: п = 1;

Многоканальные п ^ 2.

3. По типу обслуживающих каналов:

Однотипные (универсальные);

Разнотипные (специализированные).

4. По порядку обслуживания:

Однофазовые - обслуживание производится на одном аппарате (посту);

Многофазовые - требования последовательно проходит несколько аппаратов обслуживания (например, поточные линии ТО; конвейерная сборка авто­мобиля; линия внешнего ухода: уборка -> мойка -> обсушка -> полировка).

5. По приоритетности обслуживания:

Без приоритета - требования обслуживаются в порядке их поступления на
СМО;



С приоритетом - требования обслуживаются в зависимости от присвоенного
им при поступлении ранга приоритетности (например, заправка автомобилей
скорой помощи на АЗС; первоочередной ремонт на АТП автомобилей,
приносящих наибольшую прибыль на перевозках).

6. По величине входящего потока требований:

С неограниченным входящим потоком;

С ограниченным входящим потоком (например, в случае предварительной за­писи на определенные виды работ и услуг).

7. По структуре С МО:

Замкнутые - входящий поток требований при прочих равных условиях зависит от числа ранее обслуженных требований (комплексное АТП, обслуживающее только свои автомобили (5 на рис. 6.6));

Открытые - входящий поток требований не зависит от числа ранее обслу­женных: АЗС общего пользования, магазин по продаже запасных частей.

8. По взаимосвязи обслуживающих аппаратов:

С взаимопомощью - пропускная способность аппаратов непостоянна и зависит от занятости других аппаратов: бригадное обслуживание нескольких постов СТО; использование "скользящих" рабочих;

Без взаимопомощи - пропускная способность аппарата не зависит от работы других аппаратов СМО.

Применительно к технической эксплуатации автомобилей находят распростра­нение замкнутые и открытые, одно- и многоканальные СМО, с однотипными или специализированными обслуживающими аппаратами, с одно- или многофазовым обслуживанием, без потерь или с ограничением на длину очереди или на время нахождения в ней.

В качестве показателей эффективности работы СМО используют приведен­ные ниже параметры.

Интенсивность обслуживания

Относительная пропускная способность определяет долю обслуженных требований от общего их количества.

Вероятность того, что все посты свободны Р {) , характеризует такое состоя­ние системы, при котором все объекты исправны и не требуют проведения техни­ческих воздействий, т.е. требования отсутствуют.

Вероятность отказа в обслуживании Р огк имеет смысл для СМО с потерями и с ограничением по длине очереди или времени нахождения в ней. Она показывает долю "потерянных" для системы требований.

Вероятность образования очереди Р оц определяет такое состояние системы, при котором все обслуживающие аппараты заняты, и следующее требование "встает" в очередь с числом ожидающих требований г.

Зависимости для определения названных параметров функционирования СМО определяются ее структурой.

Среднее время нахождения в очереди

Из-за случайности входящего потока требований и продолжительности их выполнения всегда имеется какое-то среднее число простаивающих автомобилей. Поэтому требуется так распределить число обслуживающих аппаратов (постов, рабочих мест, исполнителей) по различным подсистемам, чтобы И - min. Этот класс задач имеет дело с дискретным изменением параметров, так как число аппаратов может изменяться только дискретным образом. Поэтому при анализе системы обеспечения работоспособности автомобилей используются методы исследования операций, теории массового обслуживания, линейного, нелинейного и динамического программирования и имитационного моделирования.

Пример. На автотранспортном предприятии имеется один пост диагностирования (п = 1). В данном случае длина очереди практически неограниченна. Определить параметры эффек­тивности работы диагностического поста, если стоимость простоя автомобилей в очереди составляет С\ = 20 р.е. (расчетных единиц) в смену, а стоимость простоя постов С 2 = 15 р.е. Остальные исходные данные те же, что и для предыдущего примера.

Пример. На том же автотранспортном предприятии число постов диагностирования увеличено до двух (п = 2), т.е. создана многоканальная система. Так как для создания второго поста необходимы капиталовложения (площади, оборудование и т.д.), то цена простоя средств обслуживания увеличивается до С2 = 22р.е. Определить параметры эффективности работы системы диагностирования. Остальные исходные данные те же, что для пре­дыдущего примера.

Интенсивность диагностирования и приведенная плотность потока остаются теми же:

}