Соли азотистой кислоты называются. Соли азотной и азотистой кислот

HNO3, кислородосодержащая одноосновная сильная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы.

Получается при каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (метод Габера) до смеси оксидов азота (нитрозных газов), с дальнейшим поглощением их водой

4NH3 + 5O2 (Pt) > 4NO + 6H2O

2NO + O2 > 2NO2 4NO2 + O2 + 2H2O > 4HNO3 Концентрация полученной таким методом азотной кислоты колеблется, в зависимости от технологического оформления процесса от 45 до 58 %. Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:

4KNO3 + 2(FeSO4 7H2O) (t°) > Fe2O3 + 2K2SO4 + 2HNO3^ + NO2^ + 13H2O

Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:

KNO3 + H2SO4(конц.) (t°) > KHSO4 + HNO3^

Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.

Применение:

в производстве минеральных удобрений;

в военной промышленности;

в фотографии - подкисление некоторых тонирующих растворов;

в станковой графике - для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).

1.Разбавленная азотная кислота проявляет все свойства сильных кислот, в водных растворах она диссоциирует по следующей схеме:

HNO3 H+ + NO3–,

безводная кислота:

2HNO3® NO2+ + NO3–+ H2O.

Постепенно, особенно на свету или при нагревании азотная кислота разлагается, при хранении раствор становится коричневатым из-за диоксида азота:

4HNO3 4NO2 + 2H2O + O2.

2.Азотная кислота взаимодействует почти со всеми металлами. Разбавленная азотная кислота со щелочными и щелочноземельными металлами, а также с железом и цинком образует соответствующие нитраты, нитрат аммония или гемиоксид азота в зависимости от активности металла и воду:

4Mg + 10HNO3® 4Mg(NO3)2 + N2O + 5H2O,

С тяжелыми металлами разбавленная кислота образует соответствующие нитраты, воду и выделяется оксид азота, а в случае более сильного разбавления азот:

5Fe + 12HNO3(оч. разб.)®5Fe(NO3)3 + N2+ 6H2O,

3Cu + 8HNO3® 3Cu(NO3)2 + 2NO + 4H2O.

Концентрированная азотная кислота при взаимодействии со щелочными и щелочными металлами образует соответствующие нитраты, воду и выделяется гемиоксид азота:

8Na + 10HNO3® 8NaNO3 + N2O + 5H2O.

Такие металлы как железо, хром, алюминий, золото, платина, иридий, тантал концентрированная кислота пассивирует, т.е. на поверхности металла образуется пленка оксидов не проницаемая для кислоты. Другие тяжелые металлы при взаимодействии с концентрированной азотной кислотой образуют соответствующие нитраты, воду и выделяется оксид или диоксид азота:

3Hg + 8HNO3(хол.)®3Hg(NO3)2 + 2NO + 4H2O,

Hg + 4HNO3(гор.)®Hg(NO3)2 + 2NO2+ 2H2O,

Ag + 2HNO3® AgNO3 + NO2+ 2H2O.

3.Азотная кислота способна растворить золото, платину и другие благородные металлы, но в смеси с соляной кислотой. Их смесь в отношении три объема концентрированной соляной кислоты и один объем концентрированной азотной кислоты называют “царской водкой”. Действие царской водки заключается в том, что азотная кислота окисляет соляную до свободного хлора, который соединяется с металлами:

HNO3 + HCl ® Cl2 + 2H2O + NOCl,

2NOCl ® 2NO + Cl2.

Царская водка способна растворить золото, платину, родий, иридий и тантал, которые не растворяются ни в азотной, а уж тем более соляной кислоте:

Au + HNO3 + 3HCl ® AuCl3 + NO + 2H2O,

HCl + AuCl3® H;

3Pt + 4HNO3 + 12HCl ® 3PtCl4 + 4NO + 8H2O,

2HCl + PtCl4® H2.

4.Неметаллы также окисляются азотной кислотой до соответствующих кислот, разбавленная кислота выделяет оксид азота:

3P + 5HNO3 + 2H2O ® 3H3PO4 + 5NO ,

концентрированная кислота выделяет диоксид азота:

S + 6HNO3® H2SO4 + 6NO2+ 2H2O,

зотная кислота способна также окислять некоторые неорганические соединения:

3H2S + 8HNO3® 3H2SO4 + 8NO + 4H2O.

HNO2 - слабая одноосновная кислота, существует только в разбавленных водных растворах, окрашенных в слабый голубой цвет, и в газовой фазе. Соли азотистой кислоты называются нитритами или азотистокислыми. Нитраты гораздо более устойчивы, чем HNO2, все они токсичны.

В газовой фазе планарная молекула азотистой кислоты существует в виде двух конфигураций цис- и транс-. При комнатной температуре преобладает транс-изомер

Хим. св-ва

В водных растворах существует равновесие:

2HNO2 - N2O3 + H2O - NO^ + NO2^ + H2O

При нагревании раствора азотистая кислота распадается с выделением NO и NO2:

3HNO2 - HNO3 + 2NO^ + H2O.

HNO2 немного сильнее уксусной кислоты. Легко вытесняется более сильными кислотами из солей:

H2SO4 + Ba(NO2)2 > BaSO4v + HNO2.

Азотистая кислота проявляет как окислительные, так и восстановительные свойства. При действии более сильных окислителей (Н2О2, КМпО4) окисляется в HNO3:

2HNO2 + 2HI > 2NO^ + I2v + 2H2O;

5HNO2 + 2HMnO4 >2Mn(NO3)2 + HNO3 + 3H2O;

HNO2 + Cl2 + H2O > HNO3 + 2HCl.

Азотистая кислота применяется для диазотирования первичных ароматических аминов и образования солей диазония. Нитриты применяются в органическом синтезе при производстве органических красителей.

Получение:

N2O3 + H2O 2HNO2,

NaNO2 + H2SO4 (0° C)® NaHSO4 + HNO2

AgNO2 + HCl ® AgCl + HNO2

Свойства солей

Все нитраты хорошо растворимы в воде. С повышением температуры их растворимость сильно увеличивается. При нагревании нитраты распадаются с выделением кислорода. Нитраты аммония, щелочных и щелочноземельных металлов называют селитрами, например NaNO3 - натриевая селитра (чилийская селитра), KNO3 - калиевая селитра, NH4NO3 - аммиачная селитра. Нитраты получают действием азотной кислоты HNO3 на металлы, оксиды, гидроксиды, соли. Практически все нитраты хорошо растворимы в воде.

Нитраты устойчивы при обычной температуре. Они обычно плавятся при относительно низких температурах (200-600°C), зачастую с разложением.

Нитраты щелочных металлов разлагаются до нитритов с выделением кислорода (а при длительном нагревании ступенчато разлагаются на оксид металла, молекулярные азот и кислород, ввиду чего являются хорошими окислителями).

Нитраты металлов средней активности разлагаются при нагревании до оксидов металлов с выделением диоксида азота и кислорода.

Нитраты самых малоактивных металлов (благородные металлы) разлагаются в основном до свободных металлов с выделением диоксида азота и кислорода.

Нитраты являются достаточно сильными окислителями в твёрдом состоянии (обычно в виде расплава), но практически не обладают окислительными свойствами в растворе, в отличие от азотной кислоты.

Нитрит - соль азотистой кислоты HNO2. Нитриты термически менее устойчивы, чем нитраты. Применяются в производстве азокрасителей и в медицине.

Азотистая кислота - это одноосновная слабая кислота, которая может существовать только в разбавленных водных растворах голубого цвета и в газовой форме. Соли данной кислоты называют азотистокислым или нитритами. Они токсичны и более устойчивы, чем сама кислота. Химическая формула данного вещества выглядит так: HNO2.

Физические свойства:
1. Молярная масса равна 47 г/моль.
2. равна 27 а.е.м.
3. Плотность составляет 1,6.
4. Температура плавления равна 42 градусам.
5. Температура кипения равна 158 градусам.

Химические свойства азотистой кислоты

1. Если раствор с азотистой кислотой нагреть, то произойдет следующая химическая реакция:
3HNO2 (азотистая кислота) = HNO3 (кислота азотная) + 2NO выделяется в виде газа)+ H2O (вода)

2. В водных растворах диссоциирует и легко вытесняется из солей более сильными кислотами:
H2SO4 (серная кислота) + 2NaNO2 (нитрит натрия) = Na2SO4 (сульфат натрия) + 2HNO2 (азотистая кислота)

3. Рассматриваемое нами вещество может проявлять как окислительные, так и восстановительные свойства. При воздействии на него более сильных окислителей (например: хлор, пероксид водорода H2O2, окисляется до азотной кислоты (в некоторых случаях происходит образование соли азотной кислоты):

Восстановительные свойства:

HNO2 (азотистая кислота) + H2O2 (пероксид водорода) = HNO3 (азотная кислота) + H2O (вода)
HNO2 + Cl2 (хлор) + H2O (вода) = HNO3 (кислота азотная) + 2HCl (соляная кислота)
5HNO2 (азотистая кислота)+ 2HMnO4 = 2Mn(NO3)2 (нитрат марганца, соль азотной кислоты) + HNO3 (кислота азотная) + 3H2O (вода)

Окислительные свойства:

2HNO2 (азотистая кислота)+ 2HI = 2NO (оксид кислорода, в виде газа) + I2 (йод) + 2H2O (вода)

Получение азотистой кислоты

Данное вещество можно получить несколькими способами:

1. При растворении азота оксида (III) в воде:

N2O3 (оксид азота) + H2O (вода) = 2HNO3 (азотистая кислота)

2. При растворении азота оксида (IV) в воде:
2NO3 (оксид азота) + H2O (вода) = HNO3 (азотная кислота) + HNO2 (азотистая кислота)

Применение азотистой кислоты:
- диазотирование ароматических первичных аминов;
- производство солей диазония;
- в синтезе органических веществ (например, для производства органических красителей).

Воздействие азотистой кислоты на организм

Данное вещество токсично, обладает ярким мутагенным эффектом, так как по сути своей является деаминирующим агентом.

Что такое нитриты

Нитриты - это различные соли азотистой кислоты. К воздействию температур они менее устойчивы, чем нитраты. Необходимы при производстве некоторых красителей. Применяются в медицине.

Особенное значение приобрел для человека нитрит натрия. Это вещество имеет формулу NaNO2. Используется в качестве консерванта в пищевой промышленности при производстве изделий из рыбы и мяса. Представляет собой порошок чистого белого или слегка желтоватого цвета. Нитрит натрия гигроскопичен (исключение составляет очищенный нитрит натрия) и хорошо растворяется в H2O (воде). На воздухе способен постепенно окислиться до имеет сильные восстановительные свойства.

Натрия нитрит применяется в:
- химическом синтезе: для получения диазо-аминных соединений, для дезактивирования избытка натрия азида, для получения кислорода, натрия оксида и натрия азота, для поглощения углекислого газа;
- в производстве пищевых продуктов (пищевая добавка Е250): в качестве антиокислителя и антибактериального агента;
- в строительстве: в качестве противоморозной добавки к бетону в изготовлении конструкций и строительных изделий, в синтезе органических веществ, в роли ингибитора коррозии атмосферной, в производстве каучуков, попперсов, раствора добавки для взрывчатых веществ; при обработке металла для снятия слоя олова и при фосфатировании;
- в фотографии: как антиокислитель и реагент;
- в биологии и медицине: сосудорасширяющее, спазмолитическое, слабительное, бронхолитическое; как антидот при отравлении животного или человека цианидами.

В настоящее время также используются и другие соли азотистой кислоты (например, нитрит калия).

Если нагревать калиевую или натриевую селитру, они теряют часть своего кислорода и переходят в соли азотистой кислоты HNO 2 . Разложение идет легче в присутствии свинца, связывающего выделяющийся :

KNO 3 + Pb = KNO 2 + PbO

Соли азотистой кислоты - нитриты - кристаллические , хорошо растворимые в воде (за исключением серебряной соли). NaNO 2 широко применяется при производстве различных красителей.

При действии на раствор какого-нибудь нитрита разбавленной серной кислотой получается свободная азотистая кислота:

2NaNO 2 + H 2 SO 4 = Na 2 SO 4 + 2HNO 2

Она принадлежит к числу слабых кислот = 5 10 -4) и известна только в сильно разбавленных водных растворах. При концентрировании раствора или при его нагревании азотистая кислота распадается с выделением окиси и двуокиси азота:

2HNO 2 = NO + NO 2 + H 2 O

Азотистая кислота - сильный , но в же время при действии других, более энергичных окислителей сама может окисляться в азотную кислоту.

Вы читаете, статья на тему Азотистая кислота HNO2

Азотистая кислота HN0 2 известна лишь в разбавленных растворах. Она неустойчива, поэтому в чистом виде не существует. Формула азотистой кислоты может быть представлена в виде двух таутомерных форм:

Нитрит-ион N0 2 имеет угловую форму:

При нагревании азотистая кислота расщепляется:

Азот в азотистой кислоте имеет степень окисления +3, что соответствует промежуточному состоянию между наивысшей (+5) и низшей (-3) степенями окисления. Поэтому азотистая кислота проявляет как окислительные, так и восстановительные свойства.

Окислитель:

Восстановитель:

Соли азотистой кислоты - нитриты - являются устойчивыми соединениями и за исключением AgN0 2 легко растворимы в воде. Как и сама азотистая кислота, нитриты обладают окислительно-восстановительными свойствами.

Окислитель:

Восстановитель:

Реакция с KI в кислой среде находит широкое применение в аналитической химии для обнаружения нитрит-иона N0 2 (выделяющийся свободный иод окрашивает раствор крахмала).

Большинство солей азотистой кислоты ядовиты. Наибольшее применение имеет нитрит натрия NaN0 2 , который широко используют в производстве органических красителей, лекарственных веществ, в аналитической химии. В медицинской практике применяется как сосудорасширяющее средство при стенокардии.

Азотную кислоту HN0 3 в лабораторных условиях можно получить действием концентрированной серной кислоты на NaN0 3:

Азотную кислоту в промышленных масштабах получают каталитическим окислением аммиака кислородом воздуха. Этот метод получения HN() 3 состоит из нескольких стадий. Вначале смесь аммиака с воздухом пропускают над платиновым катализатором при 800°С. Аммиак при этом окисляется до NO:

При охлаждении происходит дальнейшее окисление NO до N0 2:

Образующийся N0 2 растворяется в воде с образованием HN0 3:

Чистая азотная кислота - это бесцветная жидкость, которая при 42°С переходит в кристаллическое состояние. На воздухе она «дымит», так как пары ее с влагой воздуха образуют мелкие капельки тумана. С водой смешивается в любых соотношениях. HN0 3 имеет плоское строение:

Азот в HN0 3 является однозарядным и четырехковалентным. Нитрат- ион N0 3 имеет форму плоского треугольника, что объясняется ^-гибридизацией валентных орбиталей азота:

Азотная кислота относится к числу наиболее сильных кислот. В водных растворах она полностью диссоциирована на ионы Н + и N0 3 .

Для азотной кислоты характерны исключительно окислительные свойства. Азот в азотной кислоте находится в состоянии наивысшего окисления +5, поэтому он может только присоединять электроны. Уже под влиянием света азотная кислота разлагается с выделением N0 2 и 0 2:

В зависимости от концентрации азотной кислоты и природы восстановителя образуются различные продукты, где азот проявляет степень окисления от +4 до

Концентрированная азотная кислота окисляет большинство металлов (кроме золота и платины).

При взаимодействии концентрированной HN0 3 с малоактивными металлами, как правило, образуется N0 2:

Однако разбавленная азотная кислота в этом случае восстанавливается до NO:

Если в реакцию окисления с разбавленной азотной кислотой вступают более активные металлы, то выделяется N 3 0:

Очень разбавленная азотная кислота при взаимодействии с активными металлами восстанавливается до солей аммония:

Железо легко взаимодействует с разбавленной азотной кислотой и не реагирует на холоде с концентрированной. Аналогично ведут себя хром и алюминий. Объясняется это тем, что на поверхности этих металлов образуются оксидные пленки, которые и тормозят дальнейшее окисление металла (пассивация металла).

Таким образом, при взаимодействии азотной кислоты с металлами водород не выделяется.

Неметаллы при нагревании с HN0 3 окисляются до кислородных кислот. В зависимости от концентрации азотная кислота восстанавливается до N0 2 или NO:

Смесь, состоящая из одного объема азотной и трех объемов концентрированной соляной кислоты, называется царской водкой. Эта смесь - более сильный окислитель и растворяет такие благородные металлы, как золото и платину. Действие царской водки основано на том, что HN0 3 окисляет НС1 с выделением нитрозилхлорида, разлагающегося с образованием атомарного хлора и NO. Роль окислителя при взаимодействии с металлами выполняет хлор:

Взаимодействие с золотом протекает по реакции

Азотная кислота в зависимости от концентрации по-разному ведет себя по отношению к сульфидам, проявляющим восстановительные свойства. Так, разбавленная азотная кислота (до 20%) окисляет сульфид-ион S 2- до нейтральной серы, а сама восстанавливается до NO. Более концентрированная азотная кислота (30%-ный раствор) окисляет S 2 до SOf , восстанавливаясь при этом до NO:

В безводной азотной кислоте протекают следующие равновесные процессы:

Для распознавания нитрат-иона N0 3 и отличия его от нитрит-иона N0 2 пользуются несколькими реакциями:

а) нитраты в щелочной среде могут быть восстановлены до аммиака металлами - цинком или алюминием:

  • (выделяющийся газообразный аммиак можно обнаружить по посинению влажной лакмусовой бумаги);
  • б) сульфат железа(П) в кислой среде окисляется азотной кислотой до сульфата железа(Ш). Азотная кислота восстанавливается до NO, который с избытком FeSO^ образует комплексное соединение бурого цвета:

Соли азотной кислоты, называемые нитратами, - кристаллические вещества, хорошо растворимые в воде. При нагревании они разлагаются с выделением 0 9 . Нитраты, содержащие щелочные металлы и металлы, стоящие в ряду стандартных электродных потенциалов левее магния (включая магний), с отщеплением кислорода переходят в соответствующие нитриты:

Нитраты металлов, стоящих в ряду стандартных электродных потенциалов правее меди, расщепляются с образованием свободных металлов:

Нитраты остальных металлов разлагаются до оксидов:

Для качественного обнаружения применяется реакция

в результате которой выделяется бурый газ (N0 9).

Так как нитраты легко отщепляют кислород при высоких температурах и, следовательно, являются окислителями, то их применяют для изготовления легко воспламеняющихся и взрывчатых смесей. Например, порох представляет собой смесь состава 68% KN0 3 , 15% S и 17% С.

Наиболее важное значение имеют NaNO ;j (чилийская селитра), KN0 3 (калийная селитра), NH 4 N0 3 (аммонийная селитра) и Ca(NO:i) 2 (кальциевая селитра). Все эти соединения используются в сельском хозяйстве в качестве удобрений.

Биологическая роль азота. Азот - это макроэлемент, входит в состав аминокислот белков, РНК и ДНК, гормонов, ферментов, витаминов и многих других жизненно важных субстратов.

Три из пяти оксидов азота реагируют с водой, образуя азотистую Н1М0 2 и азотную HN0 3 кислоты.

Азотистая кислота слабая и неустойчивая. Она может присутствовать лишь в небольшой концентрации в охлажденном водном растворе. Практически ее получают действием серной кислоты на раствор соли (чаще всего NaN0 2) при охлаждении почти до 0°С. При попытке повышения концентрации азотистой кислоты из раствора на дно сосуда выделяется синяя жидкость - оксид азота(Ш). При повышении температуры азотистая кислота разлагается но реакции

Оксид азота(1У) реагирует с водой, давая две кислоты (см. выше). Но с учетом разложения азотистой кислоты суммарная реакция N 2 0 4 с водой при нагревании записывается так:

Соли азотистой кислоты (нитриты) достаточно устойчивы. Нитриты калия или натрия можно получить растворением оксида азота(1У) в щелочи:

Образование смеси солей вполне понятно, так как, реагируя с водой, N 2 0 4 образует две кислоты. Нейтрализация щелочью предотвращает разложение неустойчивой азотистой кислоты и приводит к смещению равновесия реакции N 2 0 4 с водой полностью вправо.

Нитриты щелочных металлов получаются также при термическом разложении их нитратов:

Соли азотистой кислоты хорошо растворимы в воде. Растворимость некоторых нитритов исключительно высока. Например, при 25°С коэффициент растворимости нитрита калия равен 314, т.е. в 100 г воды растворяется 314 г соли. Нитриты щелочных металлов термически устойчивы и плавятся без разложения.

В кислой среде нитриты действуют как довольно сильные окислители. Фактически окислительные свойства проявляет образующаяся слабая азотистая кислота. Из растворов иодидов выделяется иод:

Иод обнаруживается по окраске, а оксид азота - по характерному запаху. Азот переходит из СО +3 в СО +2.

Окислители более сильные, чем азотистая кислота, окисляют нитриты до нитратов. В кислой среде раствор перманганата калия обесцвечивается при добавлении нитрита натрия:

Азот переходит из СО +3 в СО +5. Таким образом, азотистая кислота и нитриты проявляют окислительно-восстановительную двойственность.

Нитриты ядовиты, так как они окисляют в гемоглобине железо(П) до железа(Н1) и гемоглобин теряет способность присоединять и переносить кислород в крови. Применение большого количества азотных удобрений значительно ускоряет рост растений, но при этом они содержат в повышенной концентрации нитраты и нитриты. Употребление выращенных таким образом овощей и ягод (арбузы, дыни) приводит к отравлениям.

Огромное практическое значение имеет азотная кислота. В ее свойствах сочетаются сила кислоты (практически полная ионизация в водном растворе), сильные окислительные свойства и способность передавать нитро- группу N0 2 + другим молекулам. Азотную кислоту применяют в больших количествах для производства удобрений. В этом случае она служит источником необходимого для растений азота. Ее применяют для растворения металлов и получения хорошо растворимых солей - нитратов.

Чрезвычайно важным направлением использования азотной кислоты является нитрование органических веществ для получения разнообразных органических продуктов, содержащих нитрогруппы. Среди органических нитросоединений есть лекарственные вещества, красители, растворители, взрывчатые вещества. Ежегодно мировое производство азотной кислоты превышает 30 млн т.

В период до промышленного освоения синтеза аммиака и его окисления азотную кислоту получали из нитратов, например из чилийской селитры NaN0 3 . Селитру нагревали с концентрированной серной кислотой:

Выделяющиеся пары азотной кислоты в охлаждаемом приемнике конденсируются в жидкость с высоким содержанием HN0 3 .

В настоящее время азотную кислоту получают по различным вариантам метода, в котором исходным веществом является оксид азота(П). Как следует из рассмотрения свойств азота, его оксид NO можно получить из азота и кислорода при температуре более 2000°С. Поддержание такой высокой температуры требует большой затраты энергии. Метод был технически осуществлен в 1905 г. в Норвегии. Нагретый воздух проходил через зону горения вольтовой дуги при температуре 3000-3500°С. Выходящие из устройства газы содержали всего 2-3% оксида азота(Н). К 1925 г. мировое производство азотных удобрений по этому способу достигло 42 000 т. По современным масштабам производства удобрений - это очень мало. В дальнейшем расширение производства азотной кислоты пошло по пути окисления аммиака до оксида азота(И).

При обычном горении аммиака образуются азот и вода. Но при проведении реакции при более низкой температуре с применением катализатора окисление аммиака заканчивается образованием NO. Появление NO при пропускании смеси аммиака и кислорода через платиновую сетку было известно уже давно, но этот катализатор не дает достаточно высокого выхода оксида. Использовать этот процесс для заводского производства удалось только в XX в., когда был найден более эффективный катализатор - сплав платины и родия. Металл родий, оказавшийся чрезвычайно необходимым в производстве азотной кислоты, приблизительно в 10 раз более редок, чем платина. С катализатором Pt/Rh в смеси аммиака и кислорода определенного состава при 750°С реакция

дает выход NO до 98%. Этот процесс термодинамически менее выгоден, чем сгорание аммиака до азота и воды (см. выше), но катализатор обеспечивает быстрое соединение атомов азота, остающихся после потери водорода молекулой аммиака, с кислородом, предотвращая образование молекул N 2 .

При охлаждении смеси, содержащей оксид азота(П) и кислород, образуется оксид азота(1У) N0 2 . Далее применяются разные варианты превращения N0 2 в азотную кислоту. Разбавленную азотную кислоту получают растворением NQ 2 в воде при повышенной температуре. Реакция приведена выше (с. 75). Азотную кислоту с массовой долей до 98% получают по реакции в смеси жидкого N 2 0 4 с водой в присутствии газообразного кислорода под большим давлением. В этих условиях образующийся одновременно с азотной кислотой оксид азота(П) успевает окисляться кислородом до N0 2 , который сразу же реагирует с водой. Получается следующая суммарная реакция:

Всю цепочку последовательных реакций превращения атмосферного азота в азотную кислоту можно представить так:


Реакции оксида азота(1У) с водой и кислородом идут довольно медленно, и практически не удается достигнуть полного его превращения в азотную кислоту. Поэтому на заводах, производящих азотную кислоту, всегда происходит выброс оксидов азота в атмосферу. Из заводской трубы выходит рыжеватый дым - «лисий хвост». Окраска дыма обусловлена присутствием N0 2 . На значительном пространстве вокруг большого завода от оксидов азота погибают леса. Особенно чувствительны к воздействию N0 2 хвойные породы деревьев.

Безводная азотная кислота - бесцветная жидкость с плотностью 1,5 г/см 3 , кипящая при 83°С и замерзающая при -41,б°С в прозрачное кристаллическое вещество. На воздухе азотная кислота подобно концентрированной соляной кислоте дымит, так как пары кислоты образуют с водяным паром воздуха капли тумана. Поэтому азотная кислота с малым содержанием воды называется дымящей. Она, как правило, имеет желтую окраску, так как под действием света разлагается с образованием N0 2 . Дымящая кислота применяется сравнительно редко.

Обычно азотная кислота выпускается промышленностью в виде водного раствора с массовой долей 65-68%. Такой раствор называют концентрированной азотной кислотой. Растворы с массовой долей HN0 3 менее 10% - разбавленная азотная кислота. Раствор с массовой долей 68,4% (плотность 1,41 г/см 3) представляет собой азеотропную смесь , кипящую при 122°С. Азеотропная смесь характеризуется одинаковым составом как жидкости, так и пара над ней. Поэтому перегонка азеотропной смеси не приводит к изменению ее состава. В концентрированной кислоте наряду с обычными молекулами HN0 3 присутствуют малодиссоциироваиные молекулы ортоазотной кислоты H 3 N0 4 .

Концентрированная азотная кислота пассивирует поверхность некоторых металлов, например железа, алюминия, хрома. При контакте этих металлов с концентрированной HN() 3 химическая реакция не идет. Это значит, что они перестают реагировать с кислотой. Азотную кислоту можно транспортировать в стальных цистернах.

Как дымящая, так и концентрированная азотная кислота является сильным окислителем. Тлеющий уголь вспыхивает при соприкосновении с азотной кислотой. Капли скипидара, попадая в азотную кислоту, воспламеняются, образуя большое пламя (рис. 20.3). Концентрированная кислота окисляет при нагревании серу и фосфор.

Рис. 20.3.

Азотная кислота в смеси с концентрированной серной кислотой проявляет основные свойства. От молекулы HN0 3 отщепляется гидроксид-ион, и образуется ион нитроил (нитроний) NOJ:

Равновесная концентрация нитрония небольшая, но такая смесь нитрует органические вещества при участии этого иона. Из данного примера следует, что в зависимости от характера растворителя поведение вещества может коренным образом измениться. В воде HN0 3 проявляет свойства сильной кислоты, а в серной кислоте оказывается основанием.

В разбавленных водных растворах азотная кислота практически полностью ионизирована.

В концентрированных растворах азотной кислоты в качестве окислителя действуют молекулы HN0 3 , а в разбавленных - ионы N0 3 при поддержке кислой среды. Поэтому азот в зависимости от концентрации кислоты и природы металла восстанавливается до разных продуктов. В нейтральной среде, т. е. в солях азотной кислоты, ион N0 3 становится слабым окислителем, но при добавлении сильной кислоты к нейтральным растворам нитратов последние действуют как азотная кислота. По силе окислительных свойств в кислой среде ион N0 3 сильнее, чем Н + . Отсюда вытекает следующее важное следствие.

При действии азотной кислоты на металлы вместо водорода выделяются различные оксиды азота, а в реакциях с активными металлами азот восстанавливается до иона NH*.

Рассмотрим важнейшие примеры реакций металлов с азотной кислотой. Медь в реакции с разбавленной кислотой восстанавливает азот до NO (см. выше), а в реакции с концентрированной кислотой - до N0 2:

Железо пассивируется концентрированной азотной кислотой, а кислотой средней концентрации окисляется до степени окисления +3:

Алюминий реагирует с сильно разбавленной азотной кислотой без выделения газа, так как азот восстанавливается до СО -3, образуя соль аммония:


Соли азотной кислоты, или нитраты, известны для всех металлов. Нередко применяется старое название некоторых нитратов - селитра (натриевая селитра, калийная селитра). Это единственное семейство солей, в котором все соли растворимы в воде. Ион N0 3 не окрашен. Поэтому нитраты или оказываются бесцветными солями, или имеют окраску входящего в их состав катиона. Большинство нитратов выделяются из водных растворов в виде кристаллогидратов. Безводными нитратами являются NH 4 N0 3и нитраты щелочных металлов, кроме LiN0 3 *3H 2 0.

Нитраты часто применяют для проведения обменных реакций в растворах. Нитраты щелочных металлов, кальция и аммония в больших количествах используются в качестве удобрений. На протяжении нескольких веков нитрат калия имел огромное значение в военном деле, так как был компонентом единственного взрывчатого состава - пороха. Его получали главным образом из мочи лошадей. Содержащийся в моче азот при участии бактерий в особых селитряных кучах переходил в нитраты. При выпаривании получавшейся жидкости в первую очередь кристаллизовался нитрат калия. Этот

пример показывает, насколько ограничены были источники получения соединений азота до освоения промышленностью синтеза аммиака.

Термическое разложение нитратов происходит при температурах ниже 500°С. При нагревании нитратов активных металлов они превращаются в нитриты с выделением кислорода (см. выше). Нитраты менее активных металлов при термическом разложении дают оксид металла, оксид азота(1У) и кислород: