Экологическая емкость территории (на примере муниципального образования «Новокузнецкий сельский район»). Что такое экологически допустимые нагрузки и экологическая емкость территории? Экологическая ёмкость среды

Экологическая емкость - способность природной среды вмещать антропогенные нагрузки, вредные химические и иные воздействия в той степени, в которой они не приводят к деградации земель и всей окружающей среды.

Нагрузки на природу в пределах ее возможностей означают ее экологическую емкость, а нагрузки сверх ее возможностей (емкости) приводят к нарушению естественного закона экологического равновесия. Закон "Об охране окружающей природной среды" посвящен установлению и соблюдению предельно допустимых норм нагрузки на окружающую среду с учетом ее потенциальных возможностей (предельно допустимых выбросов и сбросов, предельно допустимых концентраций, предельно допустимых уровней). Несоблюдение, нарушение этих норм приводит к привлечению виновных к ответственности и возможному ограничению, приостановлению и прекращению деятельности предприятий, производственной и иной деятельности.

Экологическая емкость включает в себя сброс, выброс, нагрузку, концентрацию, деградацию.

Тема 4. Экология популяций – демэкология

4.1. Понятие о популяции.

4.2. Статические характеристики популяций.

4.3. Пространственное размещение и его характер.

4.1. Понятие о популяции.

Популяция (populus – от лат. народ. население) – совокупность особей одного вида, которая обладает общим генофондом и имеет общую территорию.

С экологических позиций четкого определения определение популяции еще не выработано. Наибольшее признание получила трактовка С.С. Шварца, популяция – группировка особей, которая является формой существования вида и способна самостоятельно развиваться неопределенно долгое время.

Основным свойством популяций, как и других биологических систем, является то, что они находятся в беспрерывном движении, постоянно изменяются. Это отражается на всех параметрах: продуктивности, устойчивости, структуре, распределении в пространстве. Популяциям присущи конкретные генетические и экологические признаки, отражающие способность систем поддерживать существование в постоянно меняющихся условиях: рост, развитие, устойчивость.

Типы популяций.

Популяции могут занимать разные по размеру площади и условия обитания в пределах местообитания одной популяции тоже могут быть не одинаковы. По этому признаку выделяют три типа популяций: элементарную, экологическую, географическую.

Элементарная (локальная) популяция – это совокупность особей одного вида, занимающих небольшой участок однородной площади. Между ними постоянно идет обмен генетической информацией.

Экологическая популяция – совокупность элементарных популяций, внутривидовые группировки, приуроченные к конкретным биоценозам. Растения одного вида в ценозеназываются ценопопуляцией. Обмен генетической информацией между ними происходит достаточно часто.

Географическая популяция – совокупность экологических популяций, заселивших географически сходные районы. Географические популяции существуют автономно, ареалы их относительно изолированы, обмен генами происходит редко – у животных и птиц – во время миграций, у растений – при разносе пыльцы, семян и плодов. На этом уровне происходит формирование географических рас, разновидностей, выделяются подвиды.

Вид – совокупность популяций особей, представители которых фактически или потенциально скрещиваются друг с другом в естественных условиях.

Каждый организм или популяция имеет свое местообитание: местность или тип местности, где они проживают. Когда несколько популяций различных видов живых организмов живут в одном месте и взаимодействуют друг с другом, они создают так называемое сообщество. Примерами являются все растения, животные, произрастающие и проживающие в лесу, пруду, пустыне или в аквариуме.

4.2. Статические характеристики популяций.

Выделяют две группы количественных показателей популяций – статические и динамические.

Статические показатели характеризуют состояние популяции на данный момент времени. Основные из них: численность, плотность, а также показатели структуры.

Численность - число особей в популяции. Численность популяции может значительно изменяться во времени. Она зависит от биотического потенциала вида и внешних условий.

Численность унитарных организмов (унитарные организмы, автономные в своем существовании и в то же время способные, в силу своих потребностей или под давлением обстоятельств, объединяться в группы («коллективы») с себе подобными либо с особями других видов) можно рассчитать по следующей формуле:

N 0 = N t + B – D + C - E

где, N 0 – число особей в данный момент;

N t – число особей находившихся в данной популяции в предыдущий момент;

B – число особей родившихся за время t;

D – число особей погибших за время t;

C – число особей иммигрирующих в популяцию за время t;

E – число особей эмигрирующих из популяции за время t.

Для модулярных организмов (каждый из них состоит как бы из нескольких однотипных частей, из повторяющихся «модулей») следует учитывать не только численность организмов, но и численность модулей, которая определяется по следующей формуле:

Число модулей в настоящий момент = число модулей в предыдущий момент + число отрожденных модулей – число отмерших модулей

Существует нижний предел численности, ниже которого популяция прекращает свое воспроизведение. Такая минимальная численность популяции называется критической. При определении критической численности нужно учитывать не всех особей, а только тех, которые принимают участие в размножении – это эффективная численность популяций.

Обычно численность популяций измеряется сотнями и тысячами особей. У человека минимальная численность популяций составляет около 100 особей. У крупных наземных млекопитающих численность популяций может снижаться до нескольких десятков особей (микропопуляции). У растений и беспозвоночных существуют такжемегапопуляции, численность которых достигает миллионов особей.

В стабильных по численности популяциях число особей, оставляющих потомство, должно быть равно числу таких особей в предыдущих поколениях. Для управления численностью популяций необходимо знать их основные характеристики. Лишь в этом случае возможно прогнозирование изменения состояния популяции при воздействии на неё.

Плотность - число особей или биомасса популяции, приходящаяся на единицу площади или объема.

Распределение плотности популяции тесно связано с ее пространственной структурой. Существует множество типов пространственной структуры популяций и, соответственно, типов популяционных ареалов: сплошные, разорванные, сетчатые, кольцевые, ленточные и комбинированные.

Популяция характеризуется определенной структурной организацией - соотношением групп особей по полу, возрасту, размеру, генотипу, распределением особей по территории и т.д. В связи с этим выделяют различные структуры популяции: половую, возрастную, размерную, пространственно-этологическую и др. Структура популяции формируется, с одной стороны, на основе общих биологических свойств вида, с другой стороны, под влиянием факторов среды, то есть имеет приспособительный характер.

Половая структура (половой состав) - соотношение особей мужского и женского пола в популяции. Половая структура свойственна только популяциям раздельнополых организмов. Теоретически соотношение полов должно быть одинаковым: 50% от общей численности должны составлять мужские особи, а 50% - женские особи. Фактическое соотношение полов зависит от действия различных факторов среды, генетических и физиологических особенностей вида.

Размерная структура – соотношение количества особей разных размеров.

Возрастная структура (возрастной состав) - соотношение в популяции особей разных возрастных групп. Абсолютный возрастной состав выражает численность определенных возрастных групп в определенный момент времени. Относительный возрастной состав выражает долю или процент особей данной возрастной группы по отношению к общей численности популяции. Возрастной состав определяется рядом свойств и особенностей вида: время достижения половой зрелости, продолжительность жизни, длительность периода размножения, смертность и др.

В зависимости от способности особей к размножению различают три группы: предрепродуктивную (особи еще не способные размножаться), репродуктивную (особи способные размножаться) и пострепродуктивную (особи уже не способные размножаться).

Пространственно-этологическая структура - характер распределения особей в пределах ареала. Она зависит от особенностей окружающей среды и этологии (особенностей поведения) вида.

4.3. Пространственное размещение и его характер.

Различают три основных типа распределения особей в пространстве: равномерное (регулярное), неравномерное (агрегированное, групповое, мозаичное) и случайное (диффузное).

Равномерное распределение характеризуется равным удалением каждой особи от всех соседних. Свойственно популяциям, существующим в условиях равномерного распределения факторов среды или состоящих из особей, проявляющих друг к другу антагонизм.

Неравномерное распределение проявляется в образовании группировок особей, между которыми остаются большие незаселенные территории. Характерно для популяций, обитающих в условиях неравномерного распределения факторов среды или состоящих из особей, ведущих групповой (стадный) образ жизни.

Случайное распределение выражается в неодинаковом расстоянии между особями. Является результатом вероятностных процессов, неоднородности среды и слабых социальных связей между особями.

По типу использования пространства все подвижные животные подразделяются на оседлых и кочевых. Оседлый образ жизни имеет ряд биологических преимуществ, таких как свободная ориентация, на знакомой территории при поиске пища или укрытия, возможность создать запасы пищи (белка, полевая мышь). К его недостаткам относится истощение пищевых ресурсов при излишне высокой плотности популяции.

Регуляция численности (плотности) популяции.

Гомеостаз популяции - поддержание определенной численности (плотности). Изменение численности зависит от целого ряда факторов среды - абиотических, биотических и антропогенных.

Факторы, регулирующие плотность популяции, делятся на зависимые и независимые от плотности. Зависимые от плотности факторы изменяются вместе с изменением плотности, к ним относятся биотические факторы. Независимые от плотности факторы остаются постоянными с изменением плотности, это абиотические факторы.

Популяции многих видов организмов способны к саморегуляции своей численности. Выделяют три механизма торможения роста численности популяций: 1) при возрастании плотности повышается частота контактов между особями, что вызывает у них стрессовое состояние, уменьшающее рождаемость и повышающее смертность; 2) при возрастании плотности усиливается эмиграция в новые местообитания, краевые зоны, где условия менее благоприятны и смертность увеличивается; 3) при возрастании плотности происходят изменения генетического состава популяции, например, быстро размножающиеся особи заменяются медленно размножающимися.

Понимание механизмов регуляции численности популяций чрезвычайно важно для возможности управления этими процессами. Деятельность человека часто сопровождается сокращением численности популяций многих видов. Причины этого в чрезмерном истреблении особей, ухудшении условий жизни вследствие загрязнения окружающей среды, беспокойства животных, особенно в период размножения, сокращение ареала и т.д. В природе нет и не может быть "хороших" и "плохих" видов, все они необходимы для ее нормального развития. В настоящее время остро стоит вопрос сохранения биологического разнообразия. Сокращение генофонда живой природы может привести к трагическим последствиям. Международный союз охраны природы и природных ресурсов (МСОП) издает "Красную книгу", где регистрирует следующие виды: исчезающие, редкие, сокращающиеся, неопределенные и "черный список" безвозвратно исчезнувших видов.

В целях сохранения видов человек использует различные способы регулирования численности популяции: правильное ведение охотничьего хозяйства и промыслов (установление сроков и угодий охоты и отлова рыбы), запрещение охоты на некоторые виды животных, регулирование вырубки леса и др.

В то же время деятельность человека создает условия для появления новых форм организмов или развития старых видов, к сожалению, часто вредных для человека: болезнетворных микроорганизмов, вредителей сельскохозяйственных культур и т.д.

Динамика роста численности популяции

На математическом языке эта кривая отража­ет экспоненциальный рост численности организмов и описыва­ется уравнением:

N t = N 0 e rt ,

Экспоненциальный рост возможен только тогда, когда r имеет постоянное численное значение, так как скорость роста популяции пропорциональна самой численности:

DN/Dt = rN, где r - const.

Таким образом, экспоненциальный рост численности по­пуляции - это рост численности ее особей в неизменяющихся условиях.

Условия, сохраняющиеся длительное время постоянными, невозможны в природе. Если бы это было не так, то, напри­мер, обычные бактерии могли бы дать такую массу органиче­ского вещества, которая могла покрыть весь земной шар слоем толщиной в два метра за два часа.

Однако такого в природе не происходит, так как существу­ет множество ограничивающих факторов. Чтобы иметь полную картину динамики численности по­пуляции, а также рассчитать скорость ее роста, необходимо знать величину так называемой чистой скорости воспроизвод­ства (R 0), которая показывает, во сколько раз увеличивается численность популяции за одно поколение, за время его жиз­ни - Т.

R 0 = N т /N 0 ,

где N т - численность нового поколения;

N 0 - численность особей предшествующего поколения;

R 0 - чистая скорость воспроизводства, показывающая так­же, сколько вновь родившихся особей приходится на одну особь поколения родителей. Если R 0 = 1, то популяция стационар­ная, - численность ее сохраняется постоянной.

Регуляция плотности популяции

Факторы, регулирующие плотность популяции, делятся на зависимые и независимые от плотности. Зависимые изменя­ются с изменением плотности, а независимые остаются посто­янными при ее изменении. Первые - это биоти­ческие. а вторые -абиотические факторы.

Непосредственно от плотности может зависеть и смертность в популяции. Смертность, зависимая от плотности, может регулировать численность и высокоразви­тых организмов. Помимо регуляции существует еще само­регуляция, при которой на численности популяции сказывает­ся изменение качества особей. Различают саморегуляцию фенотипическую и генотипическую.

Фенотипы - совокупность всех признаков и свойств орга­низма, сформировавшихся в процессе онтогенеза. Дело в том, что при большой плот­ности образуются разные фенотипы за счет того, что в орга­низмах происходят физиологические изменения.

Генотипические причины саморегуляции плотности попу­ляций связаны с наличием в ней мере двух разных генотипов.

Циклические колебания можно также объяснить саморегу­ляцией. Климатические ритмы и связанные с ними изменения в пищевых ресурсах заставляют популяцию вырабатывать ка­кие-то механизмы внутренней регуляции. Таким образом, саморегуляция обеспечивается механизма­ми торможения роста численности.

Тема 5. Экология популяций – демэкология

5.1. Динамические характеристики популяций.

5.2. Принцип Олли.

5.3. Биотический потенциал и сопротивление среды.

Возможно, для среднестатистического обывателя станет полной неожиданностью тот факт, что жизнь всего живого на Земле зависит не от количества денег в кошельке или от расстояния до ближайшего супермаркета, а от двух совершенно обыденных но основополагающих вещей: ежедневного СОЛНЕЧНОГО ИЗЛУЧЕНИЯ и от ФОТОСИНТЕЗА РАСТЕНИЙ — процесса образования органического вещества (биомассы) из углекислого газа и воды под воздействием солнечного света.
Фотосинтез обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете. Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90–95% сухого веса урожая собираемого человечеством. Остальные 5–10% приходятся на минеральные соли и азот, полученные из почвы. Человек использует около 7-10%% продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.

Много это или мало?

Мощность существования человеческого тела составляет около 100 Ватт . Это мощность двух электрических лампочек. Эта мощность, называемая метаболической мощностью, расходуется на поддержание биохимических процессов в человеческом теле. Энергия поступает в тело с пищей. Пищу для человека производят экосистемы биосферы. Продуктивность биосферы составляет в среднем всего полватта на квадратный метр, 0.5 Ватт/м² . Это очень небольшая мощность. Она не может обеспечить потребности неподвижного человеческого тела, которое требует, в расчете на квадратный метр, в тысячи раз больше. Из оценки этих двух фундаментальных параметров, метаболической мощности человеческого тела и мощности продуктивности биосферы, однозначно следует, что человеческие существа должны двигаться и собирать пищу, которая растет на больших территориях. Иными словами, люди созданы передвигаться и владеть большой личной территорией. В этом человек не уникален. В ненарушенных экосистемах право на индивидуальную территорию свято соблюдается у всех диких видов животных. Для млекопитающих существует универсальная зависимость площади личной территории животного от размера. Эта площадь растет примерно пропорционально массе тела, рис. 1. Маленьким животным типа мышей и землероек предлагаются небольшие участки порядка нескольких сотен квадратных метров. Крупные животные типа медведей, лосей или слонов контролируют огромные территории, размер которых может достигать сотен квадратных километров.

доктор биологических наук, ведущий научный сотрудник, заслуженный лесовод РФ, Кузбасский ботанический сад (ИЭЧ СО РАН), г. Кемерово

(на примере муниципального образования «Новокузнецкий сельский район»)

Экологическая емкость территории – понятие вполне реальное, характеризующее возможность сохранения экологических условий, приемлемых для жизнедеятельности человека. Но количественных параметров экологической емкости к настоящему времени еще не выработано, что связано с множеством факторов воздействия на природную среду, неопределенностью степени влияния техногенеза на экологию.

Имеется целый ряд методических подходов к оценке экологической емкости территории. Одним из таких является результирующий эффект экологических условий – состояние здоровья человека – продолжительность его жизни. По такому методу Санкт-Петербургский технический университет провел исследования в Кузбассе в 2005–2006 гг. (Литвиненко, Пашкевич, Шувалов, 2006).

В отчете утверждается, что предельная нагрузка на экологические условия административного района не должна превышать по добыче угля 10 млн. тонн в год. Однако это формальный подход, с которым нельзя согласиться из-за различий в горно-геологических, природно-климатических, социально-экономических условиях районов. Новок­уз­нец­кий район давно превзошел этот уровень, здесь добывается более 30 млн. тонн угля в год.

Новокузнецкий район отличается от среднестатистического разнообразием отмеченных различий, поэтому рассматривать его с экологических позиций как единое муниципальное образование не вполне правомерно. Оценку экологической емкости территории в условиях Новокузнецкого района, по нашему мнению, следует производить по степени отклонения от кризисной экологической обстановки, обусловленной такими показателями, как нарушенность земной поверхности горнодобывающими работами, атмосферное загрязнение промвыбросами. Такую оценку возможно произвести, основываясь на многочисленных публикациях и статистических данных.

Нарушенные открытыми горными работами земли имеют кризисную экологическую обстановку, хотя при своевременном проведении рекультивации или интенсивном естественном зарастании они становятся с допустимым уровнем экологического неблагополучия. Менее кризисными являются подработанные шахтами территории, где экологическую емкость шахтных полей определяет деформация поверхности, а также измененный гидрологический режим (иссушение грунтовой толщи) в результате понижения уровня грунтовых вод из-за водоотлива.

Лесные территории в экологическом отношении проявляют большую устойчивость к техногенному воздействию. Более того, они оказывают оптимизирующее, стабилизирующее влияние на природную среду. Хотя отмечаются факты деградации лесных экосистем от атмосферного загрязнения и понижения уровня грунтовых вод в местах угледобычи. Можно считать, что негативное воздействие угледобычи на лесные экосистемы сказывается в радиусе 5 км от границ горного отвода.

Экологическая емкость сельскохозяйственных угодий (пашни, лугов) определяется биопродуктивностью выращиваемых культур. Однако непосредственной связи экологического состояния территории с экологической емкостью здесь нет, поскольку биопродуктивность сельхозугодий в значительной степени определяется комплексом применяемых агротехнических мероприятий.

Дать однозначно оценку экологической ситуации в Новокузнецком районе весьма проблематично. С одной стороны, около 80 % территории района, не затронутой хозяйственной деятельностью, а это горно-таежные территории, включая государственный заповедник «Кузнецкий Алатау», можно отнести к благополучным в экологическом отношении территориям. Здесь сохранилась естественная природная среда. В то же время некоторые, порой значительные, отклонения от нормы имеют место. В частности, на значительной площади в результате интенсивной лесоэксплуатации в прошлые годы произошла смена коренных лесных формаций черневых лесов на лиственные, хотя этот процесс и является обратимым. Отмечается усыхание пихтовых лесов на западных склонах хребтов Кузнецкого Алатау на площади около 300 тыс. га. Причиной этого является перенос загрязненных промвыбросами воздушных масс господствующими западными ветрами с предприятий Южного Кузбасса и «разгрузка» их атмосферными осадками на склонах хребтов; ослабленные интоксикацией деревья подвергаются поражению патогенных ржавчинных грибов. Усыхающие пихтачи являются территорией, неблагополучной в экологическом отношении. К ним также следует отнести Кузедеевский «Липовый остров» – уникальный природный памятник государственного значения, где в результате грибной инвазии произошло усыхание древостоев липы сибирской на площади около 4000 га.

Экологическую ситуацию в освоенной части района определяет в основном деятельность угледобывающей промышленности. На территории района базируются крупные угольные разрезы – Листвянский, Ерунаковский, Байдаевский, Талдинский, Осинниковский и др., занимающие площадь более 10 тыс. га. Подземная угледобыча шахтами также сопровождается нарушением земной поверхности в результате осадки покровной толщи. Как при подземной, так и при открытой угледобыче меняется гидрологический режим (образование депрессионной воронки понижения уровня грунтовых вод).

Наиболее выражено воздействие угледобычи на природную среду в осваиваемом Ерунаковском горно-экономическом районе (южная часть «Восточного Кузбасса», расположенная в Новокузнецком районе). Высокая концентрация угледобывающих предприятий создала экологическую ситуацию, близкую к кризисной (нарушения земли, загрязнение атмосферы и гидросферы) (Потапов и др., 2005).

Не менее значимым, чем угледобыча, экологическую ситуацию района определяет промышленность городов, расположенных в пределах района. Можно сказать, что значительная часть района находится, как говорится, «под факелом заводских труб». Фоновое загрязнение атмосферы южного Кузбасса по целому ряду ингредиентов превышает ПДК.

Экологическую ситуацию в Новокузнецком районе нельзя оценивать только по техногенному воздействию на окружающую среду промышленных предприятий, расположенных непосредственно на территории района. В районе находится крупнейший индустриальный центр Кузбасса – город Новокузнецк, промышленные выбросы и сбросы которого невозможно отделить (отграничить) на территории района.

Атмосферные выбросы гор. Новокузнецка составляют 457 тыс. тонн с организованных источников выбросов. Предприятия района дают 103,7 тыс. тонн (данные 2005 г.), что составляет 18,5 % от суммарных выбросов города и района.

Техногенное воздействие распространено на площади более 2,5 тыс. км2 (если судить по пятну зачерненного снега на космоснимках) (рис.). Факелы газопылевых выбросов промпредприятий прослеживаются на расстоянии до 80 км. Аэрогенный перенос промышленных выбросов создает эффект суммирования, при котором экологическая ситуация в районе не определяется выбросами только промышленных предприятий района.

Следует отметить, что мониторинг за содержанием промвыбросов в атмосферном воздухе производится Новокузнецкой гидрометобсерваторией на 8 стационарных постах наблюдений, расположенных в черте города. За пределами города на территории района наблюдения не ведутся. Поэтому о загрязнении окружающей среды района промвыбросами можно судить только по косвенным признакам: зачернении снежного покрова, накоплении в почве тяжелых металлов, снижении биопродуктивности растений.

Экологическую емкость в настоящее время можно установить только субъективно, во многом ориентировочно. Четких, объективно обоснованных методик такой оценки пока нет, но поскольку в этом есть необходимость, мы предлагаем упрощенный подход оценки в баллах.

Предлагается три степени оценки уровня экологической обстановки, характеризующих экологическую емкость территории: кризисную, допустимую, удовлетворительную. Экологическую емкость территории возможно выразить как обратную величину уровня экологического неблагополучия. Так, при кризисной экологической обстановке экологическая емкость оценивается в 1 балл, при допустимой – в 2 балла, при удовлетворительной – в 3 балла. При конкретной оценке по отдельным сельским поселениям возможно учитывать степень деструктивного воздействия того или иного фактора, его распространение, структуру территории, поэтому величина экологической емкости может быть выражена в десятых долях балла.

Экологическую емкость сельских поселений муниципального образования «Новокузнецкий район» можно считать следующей:

  1. Атамановское сельское поселение (далее СП) – 1,8. Атмосферное загрязнение с промпредприятий Новокузнецка, около 400 га нарушенных земель при добыче гравия; по границе с Осинниками 300 га подработанных шахтами земель; 90 % территории СП – таежная зона из хвойно-лиственных лесов, пройденных рубкой.
  2. Безруковское СП – 1,7. Под факелом выбросов Томь-Усинской ГРЭС; золошлаковый отвал ГРЭС; гравийные карьеры в пойме р. Томи.
  3. Бунгурское СП – 2,0. Нарушенные земли шахтами и Листвянским разрезом; атмосферное загрязнение промвыбросами.
  4. Еланское СП – 1,4. Хвостохранилища Абагурской агломерационной фабрики, подверженные ветровой эрозии; значительное загрязнение атмосферы и почв.
  5. Ильинское СП – 2,0. Перенос атмосферных промвыбросов с ЗСМЗ, КМК и цемзавода.
  6. Костенковское СП – 2,6. В западной части карьерная добыча угля разрезом, нарушено около 800 га. 70 % площади СП покрыто лесом, преимущественно хвойным.
  7. Красулинское СП – 1,8. Осваиваемый Ерунаковский горно-экономический район, добыча угля около 10 млн тонн в год; нарушенных земель – около 4 тыс. га; северо-восточная часть СП покрыта лесом.
  8. Кузедеевское СП – 2,8. 90 % площади СП покрыто лесом, в основном пройденных рубками.
  9. Куртуковское СП – 2,7. Хозяйственно освоенная часть СП – в восточной части; около 60 % площади СП покрыто лесом.
  10. Металлургическое СП – 2,1.
  11. Орловское СП – 2,9. Открытые горные работы на площади около 1,0 тыс. га. Таежная зона.
  12. Сары-Чумышское СП – 2,9.
  13. Сидоровское СП – 1,8. Атмосферное загрязнение с ЗСМК, подработанные шахтами земли, открытая угледобыча.
  14. Сосновское СП – 2,2.
  15. Терсинское СП – 3,0. Горно-таежная зона. Леса, пройденные рубками.
  16. Чистогорское СП – 2,4.

Установить среднеарифметический показатель экологической емкости территории района считаем не корректным, т. к. такие СП, как Терсинское, Орловское, занимающие около 90 % территории, хозяйственно мало освоены, имеют низкую численность населения и не сравнимы с другими СП. Более наглядным будет разделение СП на группы по уровню экологической емкости.

I группа со сложными экологическими условиями, экологическая емкость которых в пределах до 2,0 баллов: Атамановское СП – 1,8; Безруковское СП – 1,7; Еланское СП – 1,4; Красулинское СП – 1,8; Сидоровское СП – 1,8.

II группа с баллом оценки экологической емкости от 2,0 до 2,5 баллов: Бунгурское СП – 2,0; Ильинское СП – 2,0; Металлургическое СП – 2,1; Сосновское СП – 2,2; Чистогорское СП – 2,4.

III группа с баллом оценки экологической емкости от 2,5 до 3 баллов: Костенковское СП – 2,6; Кузедеевское СП – 2,9; Куртуковское СП – 2,7; Орловское СП – 2,9; Сары-Чумышское СП – 2,9; Терсинское СП – 3,0.

I группа занимает 8 % площади района, II – 7 %, III группа – 85 %.

I группа СП, имеющих относительно низкий показатель экологической емкости, – это прилегающие к черте гор. Новокузнецка с высоким уровнем атмосферного загрязнения, большой площадью нарушенных земель.

II группа СП со средним уровнем экологической емкости также отличается интенсивным использованием природных ресурсов, но негативное техногенное воздействие здесь менее выражено, чем в I группе.

III группа с высокой экологической емкостью, это в основном лесные территории, недостаточно освоенные в хозяйственном отношении.

Литература

  1. Литвиненко В.С., Пашкевич Н.В., Шувалов Ю.В. Экологическая емкость природной среды Кемеровской области. Перспективы развития промышленности // Актуальные проблемы минерального сырьевого комплекса. Приложение к «Запискам Горного института». СПб: 2006. Т. 168. №1. 24 с.
  2. Потапов В.П., Мазикин В.П., Счастливцев Е.Л., Вашлаева Н.Ю. Геоэкология угледобывающих районов Кузбасса. – Новосибирск: Наука, 2005. С.7.
  3. Селегей Т.С. Формирование уровня загрязнения атмосферного воздуха в городах Сибири. – Новосибирск: Наука, 2005. с. 260.
1

В статье анализируются существующие понятия «экологической емкости территории», приводимые различными авторами, дается авторское определение, а также рассматриваются различные подходы к оценке и измерению данного параметра. Анализ трактовок понятия «экологическая емкость территории» приводит авторов к выводу о том, что это предел, превышение которого в процессе хозяйственной деятельности, естественного антропогенного воздействия вызовет кризисное состояние экосистемы региона. Такое понимание рассматриваемого термина позволит реализовывать взвешенную экологическую политику и применять эффективные инструменты рационального природопользования. Авторами проводится анализ существующих подходов к оценке экологической емкости территории как в отечественной, так и в зарубежной практике. Авторы предлагают рассмотреть возможность применения на практике комплексного подхода к оценке, позволяющего оценить все элементы окружающей среды, обладающие репродуктивной способностью.

экономика природопользования

экологическая емкость территории

эколого-экономическое регулирование

экономическая оценка экологической емкости

1. Баранник Л.П. Экологическая емкость территории (на примере муниципального образования «Новокузнецкий сельский район») // Экологическая стратегия / Эко-бюллетень Инэка (Новокузнецк). – 2008. – № 04 (122). – С. 42–44.

2. Вержицкий Д.Г., Безгубов В.А., Старченко Е.Н., Часовников С.Н. Перспективы развития экологических рынков в регионах сибирского федерального округа // Фундаментальные исследования. – 2015. – № 6–3. – С. 555–561.

3. Гершанок Г.А. Социально-экономическая и экологическая емкость территории при оценке устойчивости ее развития // Экономика региона / Институт экономики Уральского отделения РАН (Екатеринбург) – 2006. – № 4. – С. 166–180.

4. Денисенко Т.В. Экологическая емкость территории: принципы оценки и анализ результатов // Интерэкспо Гео-Сибирь / Сибирский государственный университет геосистем и технологий (Новосибирск). – 2005. – Т. 7. – С. 206–210.

5. Жемадукова С.Р. Экологическая емкость территории и прогнозирование поведения эколого-экономической системы с помощью орграфов (на примере республики Адыгея) // Новые технологии / Майкопский государственный технологический университет (Майкоп). – 2008. – № 6. – С. 58–61.

6. Мусихина Е.А. Пространственно-временной метод оценки экологической емкости территорий / Е.А. Мусихина, И.И. Айзенберг, О.С. Михайлова // Системы. Методы. Технологии / Братский государственный университет (Братск). – 2014. – № 2 (22). – С. 175–178.

7. Никулина Н.Л. Экологические аспекты экономической безопасности региона: автореф. дис. ... канд. экон. наук: 08.00.05. – Екатеринбург, 2008. – 14 с.

8. Старченко Е.Н., Часовников С.Н. Разработка рыночных механизмов устойчивого экологического развития промышленно-развитых регионов // Вестник Кемеровского государственного университета. – 2014. – № 3–3 (59). – С. 257–262.

9. Франц Герман К вопросу об экологической емкости региона [Электронный ресурс]. – Режим доступа: new-idea.kulichki.net/pubfiles/100522100819.pdf (Дата обращения: 2.09.2015)

10. Часовников С.Н., Старченко Е.Н., Вержицкий Д.Г. Формирование рыночных механизмов экологического рынка промышленно-развитых регионов (на примере Кемеровской области) // Вестник Кемеровского государственного университета. – 2014. – № 3–3 (59). – С. 263–271.

Современная экологическая ситуация в мире, а также в России в частности по признанию общественности и научного сообщества требует ограничения негативного воздействия на окружающую среду. Прогресс под эгидой концепции устойчивого развития предполагает ограничение техногенного и антропогенного воздействий на окружающую природную среду (ОПС) при сохранении экономического роста. При реализации данного направления применяются различные по своей структуре и назначению механизмы охраны ОПС, однако анализ результатов их применения делает необходимым их постоянное совершенствование. Одной из актуальных проблем современного природопользования является оценка экологической емкости территории. Действительно, адекватная оценка данной категории, в том числе и экономическая, позволила бы реализовывать более взвешенную природоохранную политику и являлась бы одним из важнейших индикаторов предельно допустимого антропогенного воздействия.

В современной российской литературе термин экологической емкости территории пока не является окончательно определенным и общепризнанным. Часто это вызвано конкретной спецификой приложения данного понятия к области исследования. Некоторыми авторами экологическая емкость рассматривается в разрезе хозяйственной емкости экосистемы региона, под которой понимается энергетическая способность экосистемы территории производить кислород и поглощать углекислый газ, образуемый в результате хозяйственной деятельности . Такое определение является узкоспециализированным и предназначенным для конкретных исследований в области теории устойчивого развития, так как не затрагивает многих аспектов функционирования экосистемы. Также экологическая емкость территории определяется как мера максимального техногенного воздействия . Однако такое определение не отражает возможности экосистемы региона и биогеоценоза в частности к репродукции основных компонентов окружающей среды. Преимущественно под максимально возможной техногенной нагрузкой, которую может выдерживать территория, принято рассматривать экологическую техноемкость территории. Например, в работе автор описывает полную экологическую емкость территории как совокупность экологической техноемкости территории, демографической емкости и репродуктивного потенциала биоты. Такой подход охватывает большую совокупность факторов, что делает его менее точным. Авторами работы предлагается пространственно-временной метод оценки экологической емкости территории, при этом она сама подразумевается как совокупность экологических характеристик любого отдельно взятого региона. Исходя из крайней специфики данного метода, это определение следует использовать именно в разрезе этого исследования. В зарубежной литературе ближайшим синонимом является термин «ecological carrying capacity» , который преимущественно относится к емкости среды при распространении популяций. Также это определение сопряжено с «ecological footprint», то есть воздействием видов на среду в процессе естественной жизнедеятельности.

Суммируя вышеизложенное, попробуем дать общее понятие экологической емкости территории. По своей сути, это предел, превышение которого в процессе хозяйственной деятельности, естественного антропогенного воздействия вызовет кризисное состояние экосистемы региона. Исходя из этого предела, должна осуществляться сбалансированная политика охраны окружающей среды, где экологическая емкость является предельным ориентиром. Данное определение включает в себя, с одной стороны, максимально возможное техногенное и антропогенное воздействие на окружающую природную среду и, с другой стороны, совокупность всех биогеоценозов, природных компонентов и мощность потоков биогеохимического круговорота веществ. Согласно этому определению, превышение экологической емкости территории приводит к кризису экосистемы. Тем не менее это утверждение является спорным, так как данный факт зависит от способа ее оценки. При прочих равных условиях превышение экологической емкости территории, измеренной количественно разными способами, может одновременно и приводить к кризисной ситуации, и не приводить. Например, согласно некоторым подходам, превышение экологической емкости на отдельно взятой территории не приводит к кризису, он наступает, когда емкость превышена на всех территориях. Однако рассмотрение вопроса с такого угла может повлечь усугубление современной экологической ситуации вследствие неадекватной оценки угрозы экологии. Отметим, что под экологическим кризисом в данной ситуации понимается особый тип экологической ситуации, при котором экосистемы не могут справиться с уровнем негативного воздействия самостоятельно, а среда обитания необратимо изменяется к худшему, экосистема деградирует и качественно перерождается; характерны территории с практически необратимыми нарушениями экосистем.

На сегодняшний день не существует единой методики оценки экологической емкости, которая применялась бы при осуществлении политики рационального природопользования. Приведенный ниже список включает в себя подходы, предлагаемые отечественными авторами:

– расчет значений предельно допустимых и критических параметров в соответствии с инструкциями правительства, т.е. по размеру ПДВ, ПДС, отраслевых нормативов и санитарных норм. Такой подход является значимым, однако он учитывает только экологическую техноемкость территории. Кроме того, невозможно адекватно оценить экономическую составляющую, т.к. не учитываются региональные аспекты ;

– балльная система оценки экологической емкости территории как обратная величина уровня экологического неблагополучия. Производится присвоение территории определенных баллов, при кризисной экологической обстановке экологическая емкость оценивается в 1 балл, при допустимой – в 2 балла, при удовлетворительной – в 3 балла . В зависимости от специфики сельских поселений, они делятся на группы по уровню экологической емкости. По утверждению самого автора, предлагающего методику, оценка является субъективной и упрощенной. Действительно, оценка не имеет количественного выражения и может быть использована лишь для общей характеристики территории ;

– применение методов классического системного анализа и теории открытых систем для построения пространственно-временного метода оценки экологической емкости территории. Как отмечают авторы, данные инструменты ориентированы на изучение систем в статическом состоянии. Так как экосистемы являются динамическими, причем с большим числом переменных факторов, требуется разработка и применение более совершенных методов оценки ;

– измерение экологической емкости территории просто как суммы экологической техноемкости территории, демографической емкости и репродуктивного потенциала биоты. Техноемкость измеряется как сумма всех экологических техноемкостей компонентов природного комплекса: атмосферы, гидросферы, почвы. Выражение экологической емкости в условных тоннах в год не отражает экономической составляющей данного показателя. Также условные тонны в год для одного региона могут не быть эквивалентными для другого в силу их специфики ;

– расчет экологической емкости территории по трем загрязняемым средам (воздух, вода, поверхность земли). Для воздуха определяется исходя из объема воспроизводства кислорода, для воды рассчитывается по объемам поверхностных водотоков и площади земной поверхности, содержанию главных экологически значимых субстанций в данных средах и скорости кратного обновления объема воды и биомассы . Результаты такой оценки могут применяться в узких исследованиях, например в экологических аспектах экономической безопасности региона. Однако адекватность такого измерения находится под вопросом, так как не полностью соответствует определению экологической емкости территории ;

– использование математической модели на основе геометрического образа трехслойной сферы (атмосфера Земли, кора и поверхность). Антропогенное воздействие характеризуется как изменение кривизны сферы. Рассматривается взаимосвязь энтропии и экологической емкости, используется математический инструментарий. С точки зрения экономики метод весьма поверхностно описывает конкретное применение математической модели к реальным данным .

Таким образом, на сегодняшний день оценка экологической емкости территории остается актуальным вопросом экологии, а также экономики природопользования в частности. Определение экологической емкости именно как предела и его количественное измерение позволят реализовывать взвешенную экологическую политику и применять эффективные инструменты рационального природопользования. По нашему мнению, изученные в работе методы оценки не позволяют на своей основе осуществлять сбалансированную политику, так как либо не учитывают некоторых важных аспектов, либо являются узкоспециализированными.

Вариантом выхода из сложившейся ситуации может являться ориентация на комплексный подход к оцениванию экологической емкости территории, предлагается ориентироваться на энергопотенциал каждого активного элемента окружающей среды, обладающей абсорбционной способностью. Необходимо отметить, что развитие социально-экономических систем возможно тогда и только тогда, когда существует упорядоченный поток энергии, вещества и информации из среды, на который не требуется затрат энергии, вырабатываемой самой системой. То есть для поступательного развития социально-экономической системы необходимы кем-то структурированные «дармовые» источники энергии, вещества и информации (на Земле таковыми являются природные ресурсы).

Согласно действию фундаментальных законов термодинамики, обмен между системами энергией, веществом и информацией не является эквивалентным, как по качеству, так и по количеству. Индустриальное и информационное общество, начиная с промышленного этапа своего развития, развивается потому, что использует научные знания по методам извлечения энергии, вещества и информации из среды, превращения одних их форм в другие, научные способы их диссипации и не занимается восстановлением, с целью повторного применения. За счет этого и происходит экономия затрат, порождающая, с одной стороны, рост социально-экономических систем, а с другой стороны – деградацию экосистем. Чтобы довести их до пригодного состояния, необходимы дополнительные затраты.

Следовательно, неразрывная энергетическая связь между социальной и экологической системами должна найти отражение в методике ограничения воздействия социально-экономических систем на окружающую природную среду.

В рамках проводимого исследования предлагается сформулировать подход, позволяющий учитывать энергетический потенциал негативного антропогенного воздействия на окружающую природную среду, который при сопоставлении с экологической емкостью территории (способность окружающей природной среды поглощать энергетический потенциал негативного антропогенного воздействия) позволял бы принимать управленческие решения, направленные на восстановление ассимиляционных способностей природы.

Материал исследования подготовлен при поддержке Федерального государственного бюджетного учреждения «Российский гуманитарный научный фонд», в рамках проекта «Разработка подхода к экономической оценке экологической емкости территории и ее применение для регулирования экономики региона». Публикация подготовлена в рамках поддержанного РГНФ научного проекта № 15-32-01264.

Библиографическая ссылка

Безгубов В.А., Часовников С.Н. К ВОПРОСУ ОБ ЭКОЛОГИЧЕСКОЙ ЕМКОСТИ ТЕРРИТОРИИ И СПОСОБАМ ЕЕ ОЦЕНКИ // Фундаментальные исследования. – 2015. – № 12-4. – С. 751-754;
URL: http://fundamental-research.ru/ru/article/view?id=39617 (дата обращения: 26.11.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Что такое экологически допустимые нагрузки и экологическая емкость территории?

Экологически допустимая нагрузка - хозяйственная деятельность человека, не превышающая порога устойчивости экосистемы (предельной хозяйственной емкости экосистемы). Превышение этого порога ведет к нарушению устойчивости и разрушению экосистемы.

Предельно допустимая (критическая) нагрузка - это показатель воздействия одного или нескольких вредных (загрязняющих) веществ на окружающую природную среду, превышение которого может привести к вредному воздействию на эту среду.

Предельно допустимая экологическая нагрузка (ПДЭН) - максимальная нагрузка, которая еще не вызывает ухудшения качества объекта нормирования.

Экологический норматив - законодательно установленное (т.е. обязательное для субъектов управления) ограничение экологических нагрузок. В идеальном случае экологический норматив должен совпадать с ПДЭН. Но поскольку экологический норматив учитывает привходящие обстоятельства (технологическая достижимость, стоимость, социальные издержки и т.п.), эти две категории не совпадают.

Допустимой считается любая нагрузка, не превышающая предельной (т.е. нормативной), которая, в свою очередь, равна критической нагрузке, умноженной на коэффициент запаса.

Экологическая емкость территории - уровень антропогенной нагрузки, который могут выдержать естественные экосистемы без необратимых нарушений выполняемых ими жизнеобеспечивающих функций. Полная экологическая емкость природного комплекса определяется, во-первых, объемами основных природных резервуаров - воздушного бассейна, водоемов и водотоков, земельных площадей и запасов почв, биомассы флоры и фауны; во-вторых, мощностью потоков биогеохимического круговорота, обновляющих содержимое этих резервуаров: скоростью местного атмосферного газообмена, пополнения объемов чистой воды, процессов почвообразования и продуктивностью биоты.

Список используемой литературы

1. Акимова Т.А. Основы экоразвития: Учебное пособие / Т.А. Акимова, В.В. Хаскин; Под редакцией В.И. Видяпина. - M.: Изд-во Рос. экон. акад., 1994. - 312 c.

2. Коробкин В.И. Экология / В.И. Коробкин, Л.В. Передельский. - Ростов-на-Дону: Феникс, 2002. - 384 с.

3. Общая экология: Учебник для вузов / Авт.-сост. А.С.Степановских. - М.: ЮНИТИ-ДАНА, 2001. - 510 с.

4. Основы экологии. Учебное пособие / авт.-сост. Е.А. Дмитриева. - Ярославль: ЯПГУ им. К.Д.Ушинского, 2006. - 148 с.

5. Турчин П.В. Есть ли общие законы в популяционнои экологии / П.В. Турчин // Журнал общей биологии. - 2002. - Т.63. - №1. - С.3-14.