Что такое липиды какие виды их бывают. Функции липидов

Липиды (от греч. липос – жир) включают жиры и жироподобные вещества. Содержатся почти во всех клетках - от 3 до 15%, а в клетках подкожной жировой клетчатки их до 50 %.

Особенно много липидов в печени, почках, нервной ткани (до 25 %), крови, семенах и плодах некоторых растений (29-57%). Липиды имеют разную структуру, но общие некоторые свойства. Эти органические вещества не растворяются в воде, но хорошо растворяются в органических растворителях: эфире, бензоле, бензине, хлороформе и др. Это свойство обусловлено тем, что в молекулах липидов преобладают неполярные и гидрофобные структуры. Все липиды можно условно разделить на жиры и липоиды.

Жиры

Наиболее распространенными являются жиры (нейтральные жиры, триглицериды ), представляющие собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Остаток глицерина - это вещество, хорошо растворимое в воде. Остатки жирных кислот - это углеводородные цепочки, почти нерастворимые в воде. При попадании капли жира в воду к ней обращается глицериновая часть молекул, а цепочки жирных кислот выступают из воды. В состав жирных кислот входит карбоксильная группа (-СООН). Она легко ионизируется. С ее помощью молекулы жирных кислот соединяются с другими молекулами.

Все жирные кислоты делятся на две группы - насыщенные и ненасыщенные . Ненасыщенные жирные кислоты не имеют двойных (ненасыщенных) связей, насыщенные - имеют. К насыщенным жирным кислотам относятся пальмитиновая, масляная, лауриновая, стеариновая и т. п. К ненасыщенным - олеиновая, эруковая, линолевая, линоленовая и т. п. Свойства жиров определяются качественным составом жирных кислот и их количественным соотношением.

Жиры, которые содержат насыщенные жирные кислоты, имеют высокую температуру плавления. По консистенции они, как правило, твердые. Это жиры многих животных, кокосовое масло. Жиры, которые имеют в своем составе ненасыщенные жирные кислоты, имеют низкую температуру плавления. Такие жиры преимущественно жидкие. Растительные жиры жидкой консистенции нарываются маслами . К этим жирам относят рыбий жир, подсолнечное, хлопчатниковое, льняное, конопляное масла и др.

Липоиды

Липоиды могут образовывать сложные комплексы с белками, углеводами и другими веществами. Можно выделить такие соединения:

  1. Фосфолипиды . Они являются сложными соединениями глицерина и жирных кислот и содержат остаток фосфорной кислоты. Молекулы всех фосфолипидов имеют полярную головку и неполярный хвост, образованный двумя молекулами жирных кислот. Основные компоненты клеточных мембран.
  2. Воски . Это сложные липиды, состоящие из более сложных спиртов, чем глицерин, и жирных кислот. Выполняют защитную функцию. Животные и растения используют их как водоотталкивающие и защищающие от высыхания вещества. Воски покрывают поверхность листьев растений, поверхность тела членистоногих, живущих на суше. Воски выделяют сальные железы млекопитающих, копчиковая железа птиц. Из воска пчелы строят соты.
  3. Стероиды (от греч. стереос – твердый). Для этих липидов характерно наличие не углеводных, а более сложных структур. К стероидам относятся важные вещества организма: витамин D, гормоны коры надпочечных желез, половых желез, желчные кислоты, холестерин.
  4. Липoпротеиды и гликолипиды . Липопротеиды состоят из белков и липидов, глюкопротеиды – из липидов и углеводов. Гликолипидов много в составе тканей мозга и нервных волокон. Липопротеиды входят в состав многих клеточных структур, обеспечивают их прочность и стабильность.

Функции липидов

Жиры являются главным типом запасающих веществ. Они запасаются в семени, подкожной жировой клетчатке, жировой ткани, жировом теле насекомых. Запасы жиров значительно превышают запасы углеводов.

Структурная . Липиды входят в состав клеточных мембран всех клеток. Упорядоченное размещение гидрофильных и гидрофобных концов молекул имеет большое значение для избирательной проницаемости мембран.

Энергетическая . Обеспечивают 25-30% всей энергии, необходимой организму. При распаде 1 г жира выделяется 38,9 кДж энергии. Это почти вдвое больше в сравнении с углеводами и белками. У перелетных птиц и животных, впадающих в спячку, липиды – единственный источник энергии.

Защитная . Слой жира защищает нежные внутренние органы от ударов, сотрясений, повреждений.

Теплоизоляционная . Жиры плохо проводят тепло. Под кожей некоторых животных (особенно морских) они откладываются и образуют слои. Например, кит имеет слой подкожного жира около 1 м, что позволяет ему жить в холодной воде.

У многих млекопитающих есть специальная жировая ткань, которая называется бурым жиром. Она имеет такую окраску, потому что богата митохондриями красно-бурой окраски, так как в них содержатся железосодержащие белки. В этой ткани вырабатывается тепловая энергия, необходимая животным в условиях низких

температур. Бурый жир окружает жизненно важные органы (сердце, головной мозг и т. п.) или лежит на пути крови, которая к ним приливает, и, таким образом, направляет тепло к ним.

Поставщики эндогенной воды

При окислении 100 г жиров выделяется 107 мл воды. Благодаря этой воде существует много животных пустынь: верблюды, тушканчики и т. п. Животные во время спячки также вырабатывают эндогенную воду из жиров.

Жирообразное вещество покрывает поверхность листьев, не дает им намокать во время дождей.

Некоторые липиды имеют высокую биологическую активность: ряд витаминов (A, D и т. п.), некоторые гормоны (эстрадиол, тестостерон), простагландины.

Который позволяет объективно оценить нарушения в жировом обменном процессе. Даже незначительные отклонения от норм при анализе крови на липиды может означать, что у человека имеется высокая вероятность развития различных заболеваний – сосудов, печени, желчного пузыря. Кроме этого, регулярно проводимый анализ крови на липиды позволяет врачам прогнозировать развитие конкретной патологии и своевременно предпринять меры по профилактике или лечении.

Когда нужно проводить анализ крови на липиды

Конечно, каждый человек, относящийся к собственному здоровью с вниманием, может в любое время обратиться в медицинское учреждение и пройти рассматриваемый вид обследования. Но есть и конкретные показания к проведению липидограммы:

  • внепеченочного типа;
  • нефротический синдром;
  • первого и второго типа;

Правила проведения процедуры

Пациенты должны знать, что забор крови для проведения рассматриваемого обследования осуществляется натощак утром, примерно в пределах 8-11 часов. Накануне последний прием пищи должен быть проведен не позже, чем за 8 часов до назначенного часа сдачи анализов. Врачи рекомендуют за несколько дней до назначенного дня обследования не употреблять алкоголь и отказаться от курения.

Расшифровка липидограммы

В рамках проведения рассматриваемого обследования выясняют уровень холестерина, липопротеинов высокой плотности, липопротеинов низкой плотности, липопротеинов очень низкой плотности, триглицеридов и коэффициент атерогенности.

Холестерин

Это основной липид, который поступает в организм вместе с продуктами животного происхождения. Количественный показатель данного липида в крови является интегральным маркером жирового обмена. Самый минимальный уровень определяется только у новорожденных, но с возрастом уровень его неизбежно растет и достигает своего максимума к пожилому возрасту. Примечательно, что у мужчин даже в пожилом возрасте уровень холестерина в крови ниже, чем у женщин.

Нормальные показатели холестерина при исследовании крови на липиды: 3, 2 – 5, 6 ммоль/л.

Расшифровка анализов

Повышенный уровень холестерина может свидетельствовать о следующих патологиях:

  • семейная дисбеталипопротеинемия;
  • семейная гиперхолестеринемия;
  • полигенная гиперхолестеринемия;
  • комбинированная гиперлипидемия.

Вышеуказанные патологии относятся к первичным гиперлипидемиям, но высокий уровень холестерина может свидетельствовать и о присутствии вторичных гиперлипидемий:

  • хронического течения;
  • ишемическая болезнь сердца;
  • хронического типа;
  • длительное соблюдение диеты, богатой жирами и углеводами;
  • злокачественные новообразования в поджелудочной железе;
  • инфаркт миокарда;

Если уровень холестерина в крови выраженно понижен, то это может свидетельствовать о:

  • голодании;
  • мегалобластической анемии;
  • сепсисе;
  • кахексии;
  • гипертиреозе;
  • хронической обструктивной болезни легких;
  • болезни Танжера;
  • талассемии;
  • гепатокарциноме;
  • циррозе печени в термальной стадии;
  • тяжелых инфекционных заболеваниях.

Липопротеины высокой плотности (ЛПВП)

Эти липиды единственные, которые не участвуют в формировании атеросклеротических бляшек в сосудах. У женщин уровень липопротеинов высокой плотности всегда выше, чем у мужчин.

Нормальные показатели ЛПВП – 0, 9 ммоль/л.

Расшифровка результатов

Повышение уровня липопротеинов высокой плотности свидетельствует о:

  • синдроме Кушинга;
  • обтурационной желтухе;
  • почечной недостаточности хронической формы;
  • об ожирении;
  • нефротическом синдроме;
  • беременности;
  • сахарном диабете первого и второго типа.

Кроме этого, высокий уровень рассматриваемого липида в крови может быть выявлен на фоне соблюдения диеты, богатой холестерином.

Снижение уровня липопротеинов высокой плотности выявляется на фоне:

Липопротеины низкой плотности (ЛПНП)

Рассматриваемые липопротеины считаются наиболее атерогенными липидами. Именно они транспортируют холестерин в сосудистую систему и уже там формируют атеросклерозные бляшки.

Нормальные показатели ЛПНП – 1, 71 – 3, 5 ммоль/л.

Повышенное содержание уровня липопротеинов низкой плотности означает о развитии следующих патологий в организме пациента:

  • обтурационная желтуха;
  • нефротический синдром;
  • синдром Кушинга;
  • сахарный диабет первого и второго типа;
  • ожирение;
  • почечная недостаточность в хронической форме течения;
  • гипотериоз.

Кроме этого, высокий уровень ЛПНП может быть на фоне беременности или диеты, богатой холестерином. Такие же результаты дадут исследования крови на липиды при длительном приеме некоторых лекарственных препаратов – диуретиков, глюкокортикостероидов, андрогенов.

Пониженный уровень липопротеинов низкой плотности свидетельствует о:

  • синдроме Рейе;
  • хронической анемии;
  • болезни Танжера;
  • миеломной болезни;
  • разной этиологии.

Снижение уровня рассматриваемых липидов может происходить на фоне нарушений питания (в пищу употребляют продукты богатые полиненасыщенными жирными кислотами), острого стрессового расстройства.

Липопротеины очень низкой плотности (ЛПОНП)

Это высокоатерогенные липиды, которые вырабатываются кишечником и печенью.

Нормальные показатели ЛПОНП – 0, 26 – 1, 04 ммоль/л.

Повышение уровня липопротеинов очень низкой плотности наблюдается при:

  • ожирении;
  • нефротическом синдроме;
  • гипофизарной недостаточности;
  • сахарном диабете;
  • гипотиреозе;
  • болезни Нимана-Пика;
  • хронической алкогольной интоксикации.

Кроме этого, рассматриваемый тип липидов может быть обнаружен при беременности (на 3 триместре).

Триглицериды

Так называются нейтральные жиры, которые циркулируют в плазме крови в виде липопротеидов. Вырабатываются печенью, кишечником и собственно жировыми клетками, также поступают в организм вместе с пищевыми продуктами. Именно триглицериды являются главным энергетическим источником клеток.

Нормальные показатели триглицеридов – 0, 41 – 1, 8 ммоль/л.

Расшифровка результатов анализа

Высокий уровень рассматриваемых липидов может быть выявлен на фоне первичных гиперлипидемий:

  • дефицит ЛХАТ (лецитинхолестеринацилтрансферазы);
  • семейная гипертриглицеридемия;
  • простая гипертриглицеридемия;
  • синдром хиломикронемии;
  • сложная гиперлипидемия.

Триглицериды могут быть повышены на фоне:

  • атеросклероза;
  • ишемической болезни сердца;
  • гипертонической болезни;
  • нефротического синдрома;
  • талассемии;

Снижение уровня рассматриваемого липида в крови будет присутствовать на фоне:

Коэффициент атерогенности

Это отношение атерогенных фракций липопротеинов низкой и очень низкой плотности к антиатерогенной фракции липопротеинов высокой плотности. Именно рассматриваемый показатель при проведении исследования крови на липиды позволяет «наглядно» оценить вероятность формирования атеросклеротических бляшек.

Нормальные показания коэффициента атерогенности – 1. 5 – 3. 0.

Расшифровка результатов анализов:

  • низкая вероятность формирования атеросклеротических бляшек – коэффициент атерогенности менее 3, 0;
  • умеренный риск формирования атеросклеротических бляшек – коэффициент атерогенности равен 3, - 4, 0;
  • высокий риск формирования атеросклеротических бляшек – коэффициент атерогенности более 4, 0.

Когда врач обязательно назначает анализ крови на липиды

Если у пациента уже диагностированы некоторые заболевания, то врач всегда назначает анализ крови на липиды. К таковым патологиям относятся:

  1. Подагра – уровень холестерина будет значительно повышен.
  2. Инфаркт миокарда – повышен уровень и холестерина, и триглицеридов.
  3. Облитерирующий атеросклероз нижних конечностей – повышен уровень триглицеридов и холестерина, снижен уровень липопротеинов высокой плотности.
  4. Артрит – уровень липопротеинов низкой плотности значительно снижен.
  5. Гипертиреоз – уровень холестерина, липопротеинов низкой плотности и триглицеридов понижен.
  6. Сахарный диабет первого и второго типа – повышение уровня липопротеинов низкой плотности, повышение уровня триглицеридов, холестерина и липопротеинов очень низкой плотности.
  7. Хроническая – выраженно понижен уровень холестерина.
  8. Гипертиреоз – понижен уровень триглицеридов, холестерина и липопротеинов низкой плотности.
  9. Нефротический синдром – повышен уровень всех рассматриваемых липидов в крови.
  10. Хронический панкреатит – повышен уровень липопротеинов очень низкой плотности, холестерина и триглицеридов.
  11. Острый гломерулонефрит – повышен уровень холестерина.
  12. Синдром Рейе – понижен уровень липопротеинов низкой плотности.
  13. Нервная анорексия – понижен уровень холестерина, повышен уровень липопротеинов высокой плотности.
  14. Гипотиреоз – повышен уровень липопротеинов высокой и низкой плотности, холестерина.
  15. Первичный гиперпаратиреоз – понижен уровень триглицеридов.
  16. Хроническая почечная недостаточность – повышение уровня холестерина, понижение (в некоторых случаях – повышение) уровня липопротеинов высокой плотности.
  17. Цирроз печени – при билиарном типе патологии будет выявлен высокий уровень холестерина, при классическом циррозе – повышение уровня триглицеридов, в термальной стадии цирроза печени – понижение уровня холестерина.
  18. Хронический гломерулонефрит – повышен уровень холестерина.
  19. Ожирение – повышен уровень холестерина, триглицеридов, липопротеинов низкой, высокой и очень низкой плотности.
  20. Ожоговая болезнь – уровень холестерина может быть либо повышенным, либо пониженным в зависимости от степени тяжести течения заболевания.
  21. Системная красная волчанка – повышен уровень липопротеинов очень низкой плотности.
  22. – повышен уровень триглицеридов.

Анализ крови на липиды считается достаточно информативным исследованием, которое позволяет не только подтвердить предполагаемый диагноз, но и предупредить развитие многих патологий.

Цыганкова Яна Александровна, медицинский обозреватель, терапевт высшей квалификационной категории

— это группа органических веществ, входящих в состав живых организмов и характеризуются нерастворимостью в воде и растворимости в неполярных растворителях, таких как диетилетер, хлороформ и бензол. Это определение объединяет большое количество соединений различных по химической природе, в частности таких как жирные кислоты, воски, фосфолипиды, стероиды и многие другие. Также разнообразны и функции липидов в живых организмах: жиры являются формой запасания энергии, фосфолипиды и стероиды входят в состав биологических мембран, другие липиды, содержащиеся в клетках в меньших количествах могут быть коферментами, светопоглощающего пигментами, переносчиками электронов, гормонами, вторичными посредниками время внутриклеточной передачи сигнала, гидрофобными «якорями», которые содержат белки у мембран, шаперонами, способствующих Фолдинг белков, эмульгаторами в желудочно-кишечном тракте.

Люди и другие животные имеют специальные биохимические пути для биосинтеза и расщепления липидов, однако некоторые из этих веществ являются незаменимыми и должны поступать в организм с пищей, например ω-3 и ω-6 ненасыщенные жирные кислоты.

Классификация липидов

Традиционно липиды делятся на простые (эфиры жирных кислот со спиртами) и сложные (которые кроме остатка жирной кислоты и спирта содержат еще дополнительные группы: углеводороды, фосфатные и другие). К первой группе относятся в частности ацилглицеролы и воски, ко второй — фосфолипиды, гликолипиды, также сюда можно отнести липопротеины. Эта классификация не охватывает все разнообразие липидов, поэтому часть из них выделят в отдельную группу предшественников и производных липидов (например жирные кислоты, стеролы, некоторые альдегиды и т.д.).

Современная номенклатура и классификация липидов, используется в исследованиях в области липидомикы, основывается на разделении их на восемь основных групп, каждая из которых сокращенно обозначается двумя английскими буквами:

  • Жирные кислоты (FA)
  • Глицеролипидов (GL)
  • Глицерофосфолипиды (GP)
  • Сфинголипиды (SP);
  • Стероидные липиды (ST);
  • Пренольни липиды (PR)
  • Сахаролипиды (SL)
  • Поликетиды (PK).

Каждая из групп делится на отдельные подгруппы, обозначаемые комбинацией из двух цифр.

Возможна также классификация липидов на основе их биологических функций, в таком случае можно выделить такие группы как: запасные, структурные, сигнальные липиды, кофакторы, пигменты и тому подобное.

Характеристика основных классов липидов

Жирные кислоты

Жирные кислоты — это карбоновые кислоты, молекулы которых содержат от четырех до тридцати шести атомов углерода. В составе живых организмов было обнаружено более двухсот соединений этого класса, однако широкое распространение получили около двадцати. Молекулы всех природных жирных кислот содержат четное количество атомов углерода (это связано с особенностями биосинтеза, который происходит путем добавления двокарбонових единиц), преимущественно от 12 до 24. Их углеводородные цепочки обычно неразветвленные, изредка они могут содержать трикарбонови циклы, гидроксильные группы или ответвления.

В зависимости от наличия двойных связей между атомами углерода все жирные кислоты делятся на насыщенные, которые их содержат, и ненасичнени, в состав которых входят двойные связи. Наиболее распространенными из насыщенных жирных кислот в организме человека является пальмитиновая (C 16) и стеариновая (C 18).

Ненасыщенные жирные кислоты встречаются в живых организмах чаще насыщенные (около 3/4 общего содержания). В большинстве из них наблюдается определенная закономерность в размещении двойных связей: если такая связь один, то он преимущественно находится между 9-ым и 10-ым атомами углерода, дополнительные двойные связи в основном появляются в позициях между 12- тем и 13-м и между 15-ым и 16-ым карбоном (исключением из этого правила является арахидоновая кислота). Двойные связи в природных полиненасыщенных жирных кислотах всегда изолированы, то есть между ними содержится хотя бы одна метиленовая группа (-CH = CH-CH 2 -CH = CH-). Почти во всех ненасыщенных жирных кислот, встречающихся в живых организмах, двойные связи находятся в цис конфигурации. К наиболее распространенным ненасыщенных жирных кислот относятся олеиновая, линолевая, линоленовая и арахидоновая.

Наличие цис -Двойной связей влияет на форму молекулы жирных кислот (делает ее менее компактной), а соответственно и на физические свойства этих веществ: ненасыщенные жирные кислоты в цис -форме имеют низкую температуру плавления чем соответствующие транс изомера и насыщенные жирные кислоты.

Жирные кислоты встречаются в живых организмах преимущественно как остатки в составе других липидов. Однако в небольших количествах они могут быть обнаружены и в свободной форме. Производные жирных кислот эйкозаноиды играют важную роль как сигнальные соединения.

Ацилглицериды

Ацилглицериды (ацилглицеролы, глицериды) — это эфиры трехатомных спирта глицерина и жирных кислот. В зависимости от количества эстерифицированные гидроксильных групп в молекуле глицерина они делятся на триглицериды (триацилглицеролов), диглицериды (диацилглицеролы) и моноглицериды (моноацилглицеролы). Наиболее распространенные триглицериды, которые еще имеют эмпирическую название нейтральные жиры или просто жиры.

Жиры могут быть простыми, то есть содержать три одинаковые остатки жирных кислот, например тристеарин или триолеин, но чаще встречаются смешанные жиры, содержащие остатки различных жирных кислот, например 1-пальмито-2-олеолинолен. Физические свойства триглицеридов зависят от жирнокислотного состава: чем больше они содержат остатков длинных ненасыщенных жирных кислот, тем больше в них температура плавления, и наоборот — чем больше коротких ненасыщенных, тем она меньше. В общем растительные жиры (масла) содержат около 95% ненасыщенных жирных кислот, и поэтому при комнатной температуре находятся в жидком агрегатном состоянии. Животные жиры, наоборот содержат в основном насыщенные жирные кислоты (например коровье масло состоит в основном из тристеарин), поэтому при комнатной температуре твердые.

Основной функцией ацилглицеридив является то, что они служат для запасания энергии, и является наиболее энергоемких топливом клетки.

Воски

Воски — это эфиры жирных кислот и высших одноатомных или двухатомных спиртов, с числом атомов углерода от 16 до 30. Часто в составе восков встречается цетиловый (C 16 H 33 OH) и мирициловий (C 30 H 61 OH) спирты. К природным восков животного происхождения принадлежит пчелиный воск, спермацет, ланолин, все они кроме эфиров содержат еще некоторое количество свободных жирных кислот и спиртов, а также углеводородов с числом атомов углерода 21-35.

Хотя некоторые виды, например определенные планктонные микроорганизмы, используют воски как форму запасания энергии, обычно они выполняют другие функции, в частности обеспечения водонепроницаемости покровов как животных так и растений.

Стероиды

Стероиды — это группа природных липидов, содержащих в своем составе циклопентанпергидрофенантренове ядро. В частности к этому классу соединений относятся спирты с гидроксильной группой в третьем положении — стеролы (стерины) и их эфиры с жирными кислотами — стеридов. Самым распространенным Стеролы у животных есть холестерол, что в неэстерифицированных составе входит в состав клеточных мембран.

Стероиды выполняют множество важных функций у разных организмов: часть из них являются гормонами (например, половые гормоны, и гормоны коры надпочечников у человека), витаминами (витамин D), эмульгаторами (желчные кислоты) и др.

Фосфолипиды

Основной группой структурных липидов фосфолипиды, которые в зависимости от спирта, входящего в их состав делятся на глицерофосфолипиды и сфингофосфолипиды. Общим признаком фосфолипидов является их амфифильность: они гидрофильную и гидрофобную части. Такое строение позволяет им образовывать в водной среде мицеллы и бислои, последние составляют основу биологических мембран.

Глицерофосфолипиды

Глицерофосфолипиды (фосфоглицеридов) — это производные фосфатидной кислоты, состоящий из глицерина, в котором первые две гидроксильные группы эстерифицированные жирными кислотами (R 1 и R 2), а третья — фосфатной кислотой. К фосфатной группы в третьем положении присоединяется радикал (Х), обычно азотсодержащий. В природных фосфоглицеридов, в первом положении чаще всего расположен остаток насыщенной жирной кислоты, а во втором — ненасыщенной.

Остатки жирных кислот неполярные, поэтому они образуют гидрофобную часть молекулы глицерофосфолипидов, так называемые гидрофобные хвостики. Фосфатная группа в нейтральной среде несет отрицательный заряд, в то время, как азотсодержащие соединения — положительный (некоторые фосфоглицеридов могут содержать также и отрицательно заряженный или нейтральный радикал), так эта часть молекулы полярная, она образует гидрофильную голову. В водном растворе фосфоглицеридов образуют мицеллы, в которых головы повернуты наружу (водной фазы), а гирофобни хвостики — внутрь.

Наиболее распространенными фосфоглицеридов, входящих в состав мембран животных и высших растений, является фосфатидилхолин (лецитин), в которых радикал Х — это остаток холина, и фосфатидилэтаноламин, содержащих остаток этаноламина. Реже встречаются фосфатидилсерин, в которых к фосфатной группы присоединена аминокислота серин.

Существуют также безазотистые глицерофосфолипиды: например фосфатидидинозитолы (радикал Х — циклический шестиатомный спирт инозитол), участвующих в клеточном сигналюванни, и кардиолипиновые — двойные фосфоглицеридов (две молекулы фосфатидной кислоты соединены фосфатом), найденные во внутренней мембране митохондрий.

К глицерофосфолипидов относятся также плазмалогены, характерным признаком строения этих веществ является то, что в них ацильный остаток у первого атома углерода присоединен НЕ Эстерн, а эфирного связью. У позвоночных животных плазмалогенамы, которые еще называют эфирного липидами, обогащенная ткань сердечной мышцы. Также к этому классу соединений принадлежит биологически активное вещество фактор активации тромбоцитов.

Сфингофосфолипиды

Сфингофосфолипиды (сфингомиелины) состоят из церамида, содержащий один остаток длинноцепочечных аминоспирта сфингозина и один остаток жирной кислоты, и гирофильного радикала, присоединенного к сфингозина фосфодиестерним связью. В качестве гирофильного радикала чаще всего выступает холин или этаноламин. Сфингомиелины встречаются в мембранах различных клеток, но богатый на них нервная ткань, особенно высокое содержание этих веществ в миелиновой оболочке аксонов, откуда и происходит их название.

Гликолипиды

Гликолипиды — это класс липидов, содержащих остатки моно- или олигосахаридов. Они могут быть как производными глицерина, так и сфингозина.

Глицерогликолипиды

Глицерогликолипиды (гликозилглицеролы) — это производные диацилглицеролив, в которых, к третьему атома углерода глицерина присоединен гликозильним связью моно- или олигосахарид. Наиболее распространенными из этого класса соединений является галактолипидов, содержащих один или два остатка галактозы. Они составляют от 70% до 80% всех липидов мембран тилакоидов, из-за чего наиболее распространенными мембранными липидами биосферы. Предполагается, что растения «заменили» фосфолипиды гликолипидами за того, что содержание фосфатов в почве часто является лимитирующим фактором, а такая замена позволяет сократить потребность в нем.

На ряду с галактолипидов в растительных мембранах встречаются также сульфолипиды, содержащих остаток сульфатированных глюкозы.

Сфингогликолипиды

Сфингогликолипиды — содержат церамид, а также один или несколько остатков сахаров. Этот класс соединений разделяют на несколько подклассов в зависимости от строения углеводного радикала:

  • Цереброзиды — это сфингогликолипиды, гидрофильная часть которых представлена ​​остатком моносахарида, обычно глюкозы или галактозы. Галактоцереброзиды распространены в мембранах нейронов.
  • Глобозиды — олигосахаридных производные церамидов. Вместе с цереброзидов их называют нейтральными гликолипидами, поскольку при pH 7 они незаряженные.
  • Ганглиозиды — сложные с гликолипидов, их гидрофильная часть представлена ​​олигосахариды, на конце которого всегда находится один или несколько остатков N-ацетилнейраминовой (сиаловой) кислоты, поэтому они имеют кислотные свойства. Ганглиозиды наиболее распространенные в мембранах ганглионарной нейронов.

Основные функции

Подавляющее большинство липидов в живых организмах принадлежат к одной из двух групп: запасные, выполняющих функцию запасания энергии (преимущественно триацилглицеролов), и структурные, которые участвуют в построении клеточных мембран (преимущественно фосфолипиды и гилколипиды, а также холестерол). Однако функции липидов не ограничиваются только этими двумя, они также могут быть гормонами или другими сигнальными молекулами, пигментами, эмульгаторами, водоотталкивающими веществами покровов, обеспечивать термоизоляцию, изменение плавучести и тому подобное.

Запасные липиды

Почти все живые организмы запасают энергию в форме жиров. Существуют две главные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же, как в углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более вдвое больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры гидрофобные соединения, поэтому организм, запасает энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г приходится 2 г воды. Однако триглицериды это «медленнее» источник энергии чем углеводы.

Жиры запасаются в форме капель в цитоплазме клетки. У позвоночных имеющиеся специализированные клетки — адипоциты, почти целиком заполнены большим каплей жира. Также богатым ТГ являются семена многих растений. Мобилизация жиров в адипоцитах и ​​клетках семян, прорастает, происходит благодаря ферментам липазы, которые розщепелюють их к глицерина и жирных кислот.

У людей наибольшее количество жировой ткани расположена под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желез. Лицу с легким ожирением (15-20 кг триглицеридов) таких запасов может хватить для обеспечения энергией в течение месяца, в то время как всего запасного гликогена хватит менее чем на сутки.

Жировая ткань, на ряду с энергетическим обеспечением, выполняет также и другие функции: защита внутренних органов от механических повреждений; термоизоляция, особенно важна для теплокровных животных, живущих в очень холодных условиях, таких как тюлени, пингвины, моржи; жиры также могут быть источником метаболической воды, именно с такой целью используют свои запасы триглицеридов жители пустынь: верблюды, кенгуру крысы (Dipodomys).

Структурные липиды

Все живые клетки окружены плазматическими мембранами, основным структурным элементом которых является двойной слой липидов (липидный бислой). В 1 мкм 2 биологической мембраны содержится около миллиона молекул липидов. Все липиды, входящие в состав мембран, имеют амфифильные свойства: они составляют с гирофильнои и гирофобнои частей. В водной среде такие молекулы спонтанно образуют мицеллы и бислои результате гидрофобных взаимодействий, в таких структурах полярные головы молекул возвращены наружу водной фазы, а неполярные хвосты — внутрь, такое же размещение липидов характерно для природных мембран. Наличие гидрофобного слоя очень важна для выполнения мембранами их функций, поскольку он непроницаем для ионов и полярных соединений.

Липидный бислой биологических мембран — это двумерная жидкость, то есть отдельные молекулы могут свободно передвигаться относительно друг друга. Текучесть мембран зависит от их химического состава: например, с увеличением содержания липидов, в состав которых входят полиненасыщенные жирные кислоты она увеличивается.

Основными структурными липидами, входящих в состав мембран животных клеток, является глицерофосфолипиды, в основном фосфатидилхолин и фосфатидилэтаноламин, а также холестерол, что увеличивает их непроницаемость. Отдельные ткани могут быть выборочно обогащенные другими классами мембранных липидов, например нервная ткань содержит большое количество сфингофосфолипидив, в частности сфингомиелину, а также сфингогликолипидив. В мембранах растительных клеток холестерол отсутствует, однако встречается другой стероид — эргостерол. Мембраны тилакоидов содержат большое количество галактолипидов, а также сульфолипиды.

Уникальным липидным составом характеризуются мембраны архей: они состоят из так называемых глицерин диалкил гилцерол тетраетерив (ГДГТ). Эти соединения построены из двух длинных (около 32 атомов углерода) разветвленных углеводородов, присоединенных на обоих концах к остаткам глицерина эфирного связью. Использование эфирного связи вместо Эстерн, характерного для фосфо- и гликолипидов, объясняется тем, что он более устойчив к гидролизу в условиях низких значений pH и высокой температуры, что характерно для среды, в которой обычно проживают археи. На каждом из концов ГДГТ до глицерина присоединен по одной гидрофильной группе. ГДГТ в среднем вдвое длиннее мембранные липиды бактерий и эукариот и могут пронизывать мембрану насквозь.

Регуляторные липиды

Некоторые из липидов играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, в липидов относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.

Среди липидов также и вторичные посредники — вещества, которые принимают участие в передаче сигнала от гормонов или других биологически активных веществ внутри клетки. В частности фосфатидилинозитол-4,5 бифосфат (ФИ (4,5) Ф2) задействован в сигналюванни с участием G-белков, фосфатидилинозитол-3,4,5-трифосфат инициирует образование супрамолекулярных комплексов сигнальных белков в ответ на действие определенных внеклеточных факторов, сфинголипиды, такие как сфингомиелин и цермаид, могут регулировать активность протеинкиназы.

Производные арахидоновой кислоты — эйкозаноиды — является примером паракринных регуляторов липидной природы. В зависимости от особенностей строения эти вещества делятся на три основные группы: простагландины, тромбоксаны и лейкотриены. Они участвуют в регуляции широкого спектра физиологических функций, в частности эйкозаноиды необходимые для работы половой системы, для индукции и прохождения воспалительного процесса (в том числе обеспечение таких его аспектов как боль и повышенная температура), для свертывания крови, регуляции кровяного давления, также они могут быть задействованы в аллергических реакциях.

Другие функции

Часть витаминов, то есть веществ, необходимых для жизнедеятельности организма в небольших количествах, относятся к липидов. Их объединяют под названием жирорастворимые витамины и разделяют на четыре группы: витамин A, D, E и K. По химической природе все эти вещества являются изопреноидов. К изопреноидов также относятся и переносчики электронов убихинон и пластохинона, что является частью электронтранспортных цепей митохондрий и пластид соответственно.

Большинство изопреноидов содержащих конъюгированные двойные связи, из-за чего в их молекулах возможна делокализация электронов. Такие соединения легко возбуждаются светом, в результате чего они имеют цвет видимый человеческому глазу. Многие организмы используют изопреноиды как пигменты для поглощения света (например каротиноиды входящих в светособирающих комплексов хлоропластов), а также и для общения с особями своего или других видов (наприкалд изопреноидов зеаксантин предоставляет перьям некоторых птиц желтого цвета).

Липиды в диете человека

Среди липидов в диете человека преобладают триглицериды (нейтральные жиры), они являются богатым источником энергии, а также необходимые для всасывания жирорастворимых витаминов. Насыщенными жирными кислотами богата пища животного происхождения: мясо, молочные продукты, а также некоторые тропические растения, такие как кокосы. Ненасыщенные жирные кислоты попадают в организм человека вследствие употребления орехов, семечек, оливкового и других растительных масел. Основными источниками холестерина в рационе является мясо и органы животных, яичные желтки, молочные продукты и рыба. Однако около 85% процентов холестерина в крови синтезируется печенью.

Организация American Heart Association рекомендует употреблять липиды в количестве не более 30% от общего рациона, сократить содержание насыщенных жирных кислот в диете до 10% от всех жиров и не употреблять более 300 мг (количество, содержащееся в одном желтке) холестерола в сутки. Целью этих рекомендаций является ограничение уровня холестерина и триглицеридов в крови до 20 мг / л.

Жиры занимают высокую энергетическую ценность и играют важную роль в биосинтезе липидных структур, прежде всего мембран клеток. Жиры пищевых продуктов представлены триглицеридами и липоидного веществами. Жиры животного происхождения состоят из насыщенных жирных кислот с высокой температурой плавления. Растительные жиры содержат значительное количество полиненасыщенных жирных кислот (ПНЖК).

Животные жиры содержат свиное сало (90-92% жира), сливочное масло (72-82%), свинина (до 49%), колбасы (20-40% для разных сортов), сметана (20-30%), сыры (15-30%). Источниками растительных жиров является масла (99,9% жира), орехи (53-65%), овсяная крупа (6,1%), гречневая крупа (3,3%).

Незаменимые жирные кислоты

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать неспособна. Поэтому они называются незаменимыми, к таким в частности относятся ω-3 (линоленовая) и ω-6 (линолевая) полиненасични жирные кислоты, они содержатся в основном в растительных жирах. Линоленовая кислота является предшественником для синтеза двух других ω-3 кислот: ейозапентаеноевои (EPA) и докозагексаеноевои (DHA). Эти вещества необходимы для работы головного мозга, и положительно влияют на конгитивни и поведенческие функции.

Важно также соотношение ω-6 ω-3 жирных кислот в рационе: рекомендуемые пропорции лежат в пределах от 1: 1 до 4: 1. Однако исследования показывают, что большинство жителей Северной Америки употребляют в 10-30 раз больше ω-6 жирных кислот, чем ω-3. Такое питание связано с риском возникновения сердечно-сосудистых заболеваний. Зато «средиземноморская диета» считается значительно здоровее, она богата линоленовой и другие ω-из кислоты, источником которых являются зеленые растения (напирклад листья салата) рыба, чеснок, цели злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую ω-с жирные кислоты рекомендуется употреблять рыбий жир.

Транс -ненасичени жирные кислоты

Большинство природных жиров содержат ненасыщенные жирные кислоты с двойными связями в цис -конфигурации. Если пища, богатая такие жиры, долгое время находится в контакте с воздухом, она горчит. Этот процесс связан с окислительным расщеплением двойных связей, в результате которого образуются альдегиды и карбоновые кислоты с меньшей молекулярной массой, часть из которых является летучими веществами.

Для того чтобы увеличить срок хранения и устойчивость к высоким температурам триглицеридов с ненасыщенными жирными кислотами применяют процедуру частичной гидрогенизации. Следствием этого процесса является превращение двойных связей в одинарные, однако побочным эффектом также может быть переход двойных связей с цис — в транс -конфигурации. Употребление так называемых «транс жиров» влечет повышение содержания липопротеинов низкой плотности («плохой» холестерол) и снижение содержания липопротеинов высокой плотности («хороший» холестерин) в крови, что приводит к увеличению риска возникновения сердечно-сосудистых заболеваний, в частности коронарной недостаточности. Более того «транс жиры» способствуют воспалительным процессам.

Негативный эффект «транс жиров» проявляется при употреблении 2-7 г в сутки, такое их количество может миситись в одной порции картофеля фри жареной на частично гидрогенизированные масла. Некоторыми законодательствами запрещено использование такого масла, например в Дании, штате Филадельфия и Нью-Йорк.

I. ЛИПИДЫ - органические вещества, характерные для живых организмов, нерастворимые в воде, но растворимые в органических растворителях (сероуглероде, хлороформе, эфире, бензоле), дающих при гидролизе высокомолекулярные жирные кислоты. Они не являются в отличие от белков, нуклеиновых кислот и полисахаридов, не являются высокомолекулярными сединениями, их структура весьма разнообразна, они имеют лишь один общий признак – гидрофобность.

В организме липиды выполняют следующие функции:

1. энергетическая - являются резервными соединениями, основной формой запаса энергии и углерода. При окислении 1 г нейтральных жиров (триацилглицеролов) выделяется около 38 кДж энергии;

2. регуляторная – липидами являются жирорастворимые витамины и производные некоторых жирных кислот, которые участвуют в обмене веществ.

3. структурная - являются главными структурными компонентами клеточных мембран, образуют двойные слои полярных липидов, в которые встраиваются белки-ферменты;

4. защитная функция:

Ø защищает органы от механических повреждений;

Ø участвует в терморегуляции.

Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.

По структуре липиды можно подразделит на три группы:

Ø простые липиды – к ним относятся только эфиры жирных кислот и спиртов. Сюда относятся: жиры, воски и стериды;

Ø сложные липиды – в их состав входят жирные кислоты, спирты и другие компоненты различного химического строения. К ним относятся фосфолипиды, гликолипиды и т.д.;

Ø производные липидов – это в основном жирорастворимые витамины и их предшественники.

В тканях животных жиры находятся в частично свободном состоянии, в большей степени они составляют комплекс с белками.

По химическому составу, строению и функции, выполняемой в живой клетке липиды подразделяются на:

II. Простые липады – соединения, состоящие только из жирных кислот и спиртов. Они делятся на нейтраольные ацилглицериды (жиры) и воска.

Жиры – запасные вещества, накапливаающиеся в очень больших количествах в семеных и плодах многих растений, входят в состав организма человека, животных, микробов и даже вирусов.

По химическому строению жиры – смесь сложных эфиров (глицеринодов) трехатомного спитра глицерина и высокомолекулярных жирных кислот – построены по типу:

СН 2 -О-С-R 1

СН 2 -О-С-R 3

где R 1 , R 2 , R 3 – радикалы высокомолекулярных жирных кислот.

Жирные кислоты представляют собой длинноцепочечные монокарбоновый кислоты (содержат от 12 до 20 углеродных атомов).

Жирные кислоты, входящие в состав жиров, разделяются на насыщенные (не содержат двойных углерод-углеродных связей) и ненасыщенные или непридельные (содержат одну и более двойную углерод-углеродную связь). Ненасыщенные жирные кислоты подразделяются на:

1. мононенасыщенные – содержат одну связь:

2. полиненасыщенные – содержат больше чем одну связь.

Из насыщенных кислот наибольшее значение имеют:

пальмитиновая (СН 3 – (СН 2) 14 – СООН)

стеариновая (СН 3 – (СН 2) 16 – СООН);

наиболее важные из ненасыщенных жирных кислот – олеиновая, линолевая и линоленовая.

СН 3 – (СН 2) 7 – СН = СН– (СН 2) 7 – СООН – олеиновая кислота

СН 3 –(СН 2) 4 –СН= СН – СН 2 – СН = СН – (СН 2) 7 – СООН – линолевая кислота

СН 3 –СН 2 –СН=СН–СН 2 –СН=СН–СН 2 –СН=СН–(СН 2) 7 – СООН – линоленовая

Свойства жиров определяются качественным составом жирных кислот, их количественным соотношением, процентным содержанием свободных, несвязанных с глицерином жирных кислот и т.п.

Если в составе жира преобладают насыщенные (предельные) жирные кислоты, то жир имеет твердую консистенцию. Напротив в жидких жирах преобладают непридельные (ненасыщенные) кислоты. Жидкие жиры называют маслами.

Показателем насыщенности жира служит йодное число – количество миллиграмм йода, способного присоединиться к 100 г жира по месту разрыва двойных связи в молекулах непридельных кислот. Чем больше в молекуле жира двойных связей (выше его ненасыщенность), тем выше его йодное число.

Другой важный показатель – число омыления жира. При гидролизе жира образуются глицерин и жирные кислоты. Последние со щелочами образуют слои, называемые мылами, а процесс их образования называется омыления жиров.

Число омыления – количество КОН (мг), идущего на нейтрализацию кислот, образующихся при гидролизе 1 г жира.

Особенностью жиров является их способность к образованию в определенных условиях водных эмульсий, что важно для питания организма. Примером такой эмульсии служит молоко – секрет молочных желез млекопитающих и человека. Молоко представляет собой тонкую эмульсию жира молока в его плазме. В 1 мм 3 молока содержится до 5-6 млн. молочных жировых шариков диаметром около 3 мкм. Липиды молока состоят преимущественно из триглицеридов, в которых преобладают олеиновая и пальметиновая кислоты.

Полиненасыщенные жирные кис(лоты олеиновая, линолевая, линоленовая и арахидоновая) называют незаменимыми (эссенциальными), т.к. они необходимы человеку. Полиненасыщенные жирные кислоты способствуют выделению из организма холестерина, предупреждая и ослабляя атеросклероз, повышают эластичность кровеносных сосудов.

Благодаря тому, что в ненасыщенных жирных кислотах есть двойные связи, они очень легко окисляются. Процесс окисления жира может идти сам по себе за счет присоединения кислорода воздуха по месту двойных связей, однако он может значительно ускоряться под влиянием фермента липоксигеназы.

Воски – сложные эфиры высокомолекулярных жирных кислот и одноатомных спиртов с длинной углеродной цепью. Это твердые соединения с ярко выраженными гидрофобными свойствами. Жирные кислоты в них содержат от 24 до 30 углеродных атомов, а высокомолекулярные спирты – 16-30 атомов углерода.

R 1 – CH 2 – O – CO – R 2

Основная функция природных восков – образование защитных покрытий на листьях, стеблях и плодах растений, которые предохраняют плоды от высыхания и поражения микроорганизмами. Под покровом из пчелиного воска хранится мед и развиваются личинки пчелы. Ланолин - воск животного происхождения предохраняет волосы и кожу от действия воды

Стериды – сложные эфиры циклических спиртов (стеролов) и высших жирных кислот. Они образуют омыляемую фракцию липидов.

Омыляемую фракцию липидов образуют стеролы.

II. Сложные липиды

Фосфатиды (фосфолипиды ) – жиры, содержащие в своем составе фосфорную кислоту, связанную с азотистым основанием или другим соединением (В ).

СН 2 -О-С-R 1

СН 2 -О- Р = О

Если В представляет собой остаток холина, то фосфатид называется лецитином; если коламином – кофалином. В зерне и семенах преобладает лецитин, кефалин сопровождает его в небольших количествах.


Обычно считают, что жиры в организме человека выполняют роль поставщиков энергии (калорий). Но это не совсем правильно. Конечно, значительная часть жиров расходуется в качестве энергетического материала. Причем, жир служит в организме источником энергии либо при непосредственном использовании, либо потенциально – в форме запасов в жировой ткани. Однако в определенной степени жиры являются пластическим материалом, так как входят в состав клеточных компонентов (в виде комплексов с белками – липопротеинов), в частности, мембран, т.е. являются незаменимым фактором питания. Кроме того, жир в организме обеспечивает теплоизоляцию, скапливаясь в подкожном слое и вокруг определенных органов. Кроме того, жиры действуют как пищевые растворители жирорастворимых витаминов и служат источником незаменимых полиненасыщенных жирных кислот (линоленовая, арахидоновая).

При длительном ограничении жиров в питании наблюдаются нарушения в физиологическом состоянии организма: нарушается деятельность центральной нервной системы, ослабляется иммунитет и сокращается продолжительность жизни. Однако избыточное потребление насыщенных жиров приводит к нарушению обмена холестерина, усилению свертывающих свойств крови, заболеваниям почек и печени, способствует развитию атеросклероза и ожирения со всеми вытекающими отсюда последствиями.

Определение липидов, приводимое в литературе – неоднозначно. Жиры (более правильный термин «липиды») – это органические соединения, растворимые в ряде органических растворителей и нерастворимые в воде. Основным компонентом жиров являются тригицериды и липоидные вещества, к которым относятся фосфолипиды, стерины, воски и др. В пищевой технологии используют термин «жир», под которым подразумевают сумму веществ, извлекаемых органическими растворителями. При практически полном извлечении жира из пищевых продуктов термин «жир» равнозначен термину «липиды».

Более предпочтительным представляется определение липидов, как природных производных жирных кислот и родственных им соединений, входящих в состав всех живых клеток и извлекаемых из организмов и тканей неполярными растворителями.

Согласно классификации Блора липиды делят на три группы:

Простые,

Сложные,

Предшественники и производные липидов.

Простые липиды. Простыми липидами называют сложные эфиры жирных кислот с различными спиртами. К ним относятся, например, жиры и воски.

Жиры (триглицериды). Жиры (триглицериды) – сложные эфиры жирных кислот с глицерином. Если они находятся в жидком состоянии, их называют маслами. В состав триглицеридов входят глицерин (около 9%) и жирные кислоты с разной длиной углеводородной цепочки и степени насыщенности, от строения которой зависят свойства триглецеридов.

Животные и растительные жиры обладают различными физическими свойствами и составом. Животные жиры – это твердые вещества, в состав которых входит большое количество насыщенных жирных кислот, имеющих высокую температуру плавления. Растительные жиры, как правило, жидкие вещества, содержащие в основном ненасыщенные жирные кислоты, имеющие низкую температуру плавления. Источником растительных жиров являются в основном растительные масла (99,9% жира), орехи (53–65%), овсяные (6,1%) и гречневые (3,3%) крупы. Источником животных жиров – шпик свиной (90–92% жира), сливочное масло (72–82%), жирная свинина (49%), колбасы (20–40%), сметана (30%), сыры (15–30%).

Основным компонентом липидов являются жирные кислоты. Тригицериды природного происхождения содержат по крайней мере две различные жирные кислоты.

1-Пальмитоил-2,3-дистеароилгицерин

Химические, биологические и физические свойства жиров определяются входящими в его состав триглицеридом и, в первую очередь, длиной цепи, степенью насыщенности жирных кислот. В состав жиров входят в основном неразветвленные жирные кислоты, содержащие четное число атомов углерода (4–26) как насыщенные, так и моно- и полиненасыщенные кислоты.

Насыщенные жирные кислоты (пальмитиновая, стеариновая и др.) используются организмом в целом как энергетический материал. Пальмитиновая и стеариновая кислоты встречаются во всех животных и растительных жирах. Наибольшее количество насыщенных жирных кислот содержится в животных жирах: например, в говяжьем и свином жире – 25% пальмитиновой, соответственно 20% и 13% стеариновой кислот, в масле сливочном – 7% стеариновой, 25% пальмитиновой и 8% миристиновой кислот. Они могут частично синтезироваться в организме из углеводов (и даже из белков).

Ненасыщенные жирные кислоты различаются по степени «ненасыщенности». Мононенасыщенные жирные кислоты содержат одну ненасыщенную водородом связь между углеродными атомами, полиненасыщенные – несколько связей (2–6). К числу наиболее распространенных мононенасыщенных жирных кислот относится олеиновая кислота, которой много в оливковом масле (65%), маргаринах (43–47%), свином и говяжьем жире, сливочном масле и мясе гусей (11–16%).

Большинство жирных кислот, входящих в состав триглицеридов содержат 20 атомов углерода в молекуле. В молекулах олеиновой, линолевой, линоленовой 18 атомов углерода и они являются дегидропроизводными стеариновой кислоты, цис-изомерами.

Наиболее часто встречающиеся в триглицеридах насыщенные жирные кислоты: стеариновая (С 17 Н 35 СООН), пальмитиновая (С 15 Н 31 СООН), миристиновая (С 13 Н 27 СООН), арахиновая (С 19 Н 39 СООН), лауриновая (С 11 Н 23 СООН).

Особое значение имеют полиненасыщенные жирные кислоты, такие, как линолевая, линоленовая и арахидоновая, которые входят в состав клеточных мембран и других структурных элементов тканей и выполняют в организме ряд важный функций, в том числе обеспечивают нормальный рост и обмен веществ, эластичность сосудов и др. Большинство полиненасыщенных кислот не может синтезироваться в организме человека и поэтому эти кислоты являются незаменимыми, как являются незаменимыми некоторые аминокислоты и витамины. С другой стороны, эти кислоты, главным образом линолевая и арахидоновая, служат предшественниками гормоноподобных веществ – простогландинов, предотвращают отложение холестерина в стенках кровеносных сосудов (способствуют удалению его из организма), повышают эластичность стенок кровеносных сосудов. Следует отметить, что указанные функции выполняют только цис-изомеры ненасыщенных кислот.

Насыщенные жирные кислоты выполняют в основном энергетическую функцию в организме и их избыток в питании часто приводит к нарушению обмена жиров, повышению уровня холестерина в крови

Состав жиров, синтезируемых в различных частях одного и того же организма – разный. Так, у свиней внешние слои подкожного жира обладают большей ненасыщенностью, чем внутренние. Кислотный состав жиров человека близок к составу топленного говяжьего сала.

Воски. Воски – сложные эфиры жирных кислот с одноатомными спиртами. Воски – историческое название разных по составу и происхождению продуктов, преимущественно природных, которые по свойствам близки к пчелиному воску. Большинство природных восков содержит сложные эфиры одноосновных насыщенных карбоновых кислот нормального строения и стеринов с 12–46 атомами углерода в молекуле. Такие воски по химическим свойствам близки к жирам (триглицеридам), но омыляюются только в щелочной среде. Воски отличаются от жиров тем, что вместо глицерина в их состав входят стерины или высшие алифатические спирты с четным числом атомов углерода (16–36). Растительные воски также содержат парафиновые углеводороды.

Воски широко распространены в природе. В растениях они покрывают тонким слоем листья, стебли, плоды, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Содержание восков в зерне и плодах невелико. В оболочках семян подсолнечника содержится до 0,2% восков от массы оболочки, в семенах сои – 0,01%, риса – 0,05%.

Сложные липиды. Сложными липидами называют сложные эфиры жирных кислот со спиртами, дополнительно содержащие и другие группы.

Фосфолипиды. Важнейшими представителями сложных липидов являются фосфолипиды. Это – липиды, содержащие помимо жирных кислот и спирта остаток фосфорной кислоты. В их состав входят азотистые основания (чаще всего холин + OH – или этаноламин HO-CH 2 -CH 2 -NH 2), остатки аминоксилот и другие компоненты. В зависимости от спирта, входящего в состав молекулы, фосфолипид относится либо к глицерофосфолипидам (в роли спирта выступает глицерин), либо к сфингофосфолипидам, в состав которого входит сфингозин. Молекулы фосфолипидов содержат неполярные гидрофобные уголеводородные радикалы – «хвосты» и полярную гидрофильную «головку» (остатки фосфорной кислоты и азотистого основания), что определяет способность фосфолипидов формировать биологические мембраны. Входя в состав клеточных оболочек, фосфолипиды играют существенную роль для их проницаемости и обмена веществ между клетками и внутриклеточным пространством.

Наиболее распространенная группа фосфолипидов – фосфоглицериды. В их состав входят глицерин, жирные кислоты, фосфорная кислота и аминоспирты (например, холин в лецетине, этаноламин в кефалине). Аминоспирт, входящий в состав фосфолипида, определяет биологическое действие фосфолипида. Так, например, лецитин представляет собой глицерид, этерифицированный двумя, обычно разными жирными кислотами (например, стеариновой и олеиновой) и соодержащий фосфохолиновую группировку, которая при омылении дает неорганический фосфат и четвертичное основание – холин.

Лецитин проявляет липотропное действие, т.е. способствует выведению холестерина из организма. Лецитин и холин препятствуют ожирению печени и эти препараты используют для профилактики заболеваний печени. Холин, кроме того, входит в состав нервной ткани, в частности в ткани головного мозга. Ацетилхолин играет важную роль в передаче нервных импульсов. В организме человека холин может образовываться из серина, но биосинтез холина ограничен и холин должен дополнительно поступать с пищей. Таким образом, холин, как и полиненасыщенные жирные кислоты и ряд аминокислот, является незаменимым пищевым веществом.

Фосфолипиды пищевых продуктов различаются по химическому составу и биологическому действию. Последнее, как уже говорилось, во многом зависит от природы входящего в их состав аминоспирта. В пищевых продуктах встречаются в основном лецитин, в состав которого входит холин – аминоспирт, а также кефалин, в состав которого входит этаноламин.

Фосфолипиды, содержащиеся в пищевых продуктах, способствуют лучшему усвоению жиров. Так, жир в молоке находится в тонкодисперсном состоянии в значительной степени благодаря фосфолипидам молока. Именно молочный жир считается одним из наиболее легко усваиваемых жиров. Наибольшее количество фосфолипидов содержится в яйце (3,4%), относительно много (0,3–0,9%) в зерне и бобовых и нерафинированных маслах. При хранении нерафинированного растительного масла фосфолипиды выпадают в осадок. При рафинировании растительных масел содержание фосфолипидов в них снижается до 0,2–0,3%. Считают, что оптимальное содержание фосфолипидов в пище должно быть 5–10 г в день.

Помимо фосфолипидов к сложным липидам относят г ликолипиды (гликосфинголипиды), содержащие жирную кислоту, сфингозин и углеводный компонент. Гликолипиды в заметных количествах присутствуют в растительных продуктах (липиды пшеницы, овса, кукурузы, подсолнечника) Содержатся они также в животных и микроорганизмах. Гликолипиды выполняют структурные функции, участвуют в построении мембран, им принадлежит важная роль в формировании клейковинных белков пшеницы, определяющих хлебопекарное достоинство муки. Сложными липидами являются также сульфолипиды, аминолипиды. К этой категории относят и липопротеины.

Предшественники и производные липидов. К этой группе относятся жирные кислоты, глицерин, стероиды и прочие спирты, альдегиды жирных кислот и кетоновые тела, углеводороды, жирорастворимые витамины и гормоны.

Стерины (стеролы). Стерины (стеролы) – алициклические природные спирты (одноатомные вторичные спирты ряда циклопентанопергидрофенантрена, содержащие гидрооксильную группу при атоме углерода в положении 3 и метильные группы при атомах С 10 и С 13), относящиеся к стероидам. Стерины – составная часть неомыляемой фракции животных и растительных липидов. Различают животные (зоостерины), растительные стерины (фитостерины) и стерины грибов (микостерины). Основной стерин высших животных – холестерин, а растительный – b-ситостерин. Холестерин обнаружен в тканях всех животных и отсутствует, или присутствует в незначительном количестве, в растениях. Фитостерины, в отличие от холестерина, не усваиваются организмом.

Стерины, наряду с липидами и фосфолипидами, являются основным структурным компонентом клеточных мембран. Предполагают, что они влияют на клеточный метаболизм. Свои функции в организме стерины реализуют в виде комплексов с белками (липопротеидов) и сложных эфиров высших жирных кислот, являясь переносчиками их во все органы и ткани через систему кровотока. Холестерин участвует также в обмене желчных кислот и гормонов. До 80% холестерина в организме человека синтезируется в печени и других тканях. Содержание холестерина в яйцах достигает 0,57%, а в сырах – 0,28–1,61%. В сливочном масле содержится порядка 0,20%, а в мясе – 0,06–0,10%. Считается, что суточное потребление холестерина с пищей не должно превышать 0,5 г. В противном случае повышается уровень его содержания в крови, а значит, возрастает и опасность возникновения и развития атеросклероза.

Значение липидов. При рассмотрении групп липидов упоминались их разнообразные функции в организме. Обобщая выше изложенное, можно выделить следующие функции липидов в живом организме.

Липиды, входя в состав стенок клеток, выполняют в организме пластическую функцию и называются структурными. Они входят в состав мембраны клеток и участвуют в разнообразных процессах, происходящих в клетке.

Причем, как уже говорилось, липиды могут служить в организме источником энергии либо при непосредственном использовании, либо потенциально – в форме запасов в жировой ткани. В то время, как жировые отложения состоят главным образом из глицеридов, ткани головного мозга и спинного содержат сложные структурные единицы, построенные из белка, холестерина, а также из фосфолипидов, например, лецитинового типа.

Липиды, находящиеся в специальных «жировых» клетках, называют запасными и они состоят в основном из триглицеридов. Эти липиды являются аккумулятором химической энергии и используются при недостатке пищи. Липиды обладают высокой калорийностью: 1 г составляет 9 ккал – это в 2 раза выше калорийности белков и углеводов. Большинство всех видов растений также содержат запасные липиды, главным образом, в семенах. Липиды помогают растению переносить неблагоприятное воздействие внешней среды, например, низкие температуры, т.е. выполняют защитную функцию.

В растениях липиды накапливаются, главным образом, в семенах и плодах и их содержание зависит от сорта, места и условий произрастания. У животных и рыб липиды концентрируются в подкожных, мозговой и нервной тканях и тканях, окружающих важные органы (сердце, почки). Содержание липидов у животных определяется видом, составом корма, условиями содержания и др.

В состав пищевых продуктов входят так называемые «невидимые» жиры (в мясе, рыбе и молоке) и «видимые» – специально добавляемые в пищу растительные масла и животные жиры. В продуктах питания липиды содержатся в виде отдельных жировых клеток, откуда они легко извлекаются большинством органических растворителей (часто их называют «свободные липиды») или входят в состав практически всех жизненно важных клеток. В последнем случае они связаны в клетках более прочно (так называемые прочно связанные липиды). Методы количественного определения липидов учитывают эти особенности.

Помимо того, что липиды необходимы в питании как энергетический и структурный материал, они участвуют в обмене других пищевых веществ, например, способствуют усвоению витаминов А и D, а животные жиры являются источником этих витаминов. Единственный источник витамина Е и b-каротина – растительные жиры.

Ни один из жиров, взятый в отдельности, не может полностью обеспечить потребности организма в жировых веществах. Рекомендуемое содержание липидов в рационе по калорийности составляет 30–35%, что в весовых единицах (в среднем 102 г) несколько превосходит количество белков. Из указанных 102 г непосредственно в виде жиров рекомендуется потреблять 45–50 г. При работе на холоде количество жиров в рационе должно быть увеличено, так как жир участвует в процессах терморегуляции организма. Это увеличение должно идти за счет квоты углеводов, а не белков, так как белки необходимы для правильной переработки жиров.

Рекомендуется употреблять животные и растительные жиры в комплексе. Оптимальное соотношение 70% животных и 30% растительных жиров. При таком соотношении обеспечивается поступление в организм необходимых количеств полиненасыщенных и насыщенных кислот. С возрастом рекомендуется снижать потребление животных жиров.