Исследования днк человека надежды и опасения. Международный проект геном человека

Лекция 8. Введение в генетическую инженерию

Введение в биотехнологию

Функциональная классификация расходов бюджета

Классификация доходов бюджета

Бюджетная классификация

Бюджетная классификация Российской Федерации - это группировка доходов и расходов бюджетов всех уровней бюджетной системы РФ, а также источников финансирования дефицитов бюджетов. Она обеспечивает сопоставимость показателей бюджетов всех уровней бюджетной системы Российской Федерации.

Состав бюджетной классификации РФ можно объяснить так: бюджетная классификация включает в свой состав:

1. Классификацию доходов бюджетов Российской Федерации.

2. Функциональную классификацию расходов бюджетов Российской Федерации.

3. Экономическую классификацию расходов бюджетов Российской Федерации.

4. Ведомственную классификацию расходов федерального бюджета.

5. Классификацию источников внутреннего финансирования дефицитов бюджетов Российской Федерации.

6. Классификацию внешнего финансирования дефицита федерального бюджета.

7. Классификацию видов государственных внутренних долгов Российской Федерации субъектов Российской Федерации, унитарных образований.

8. Классификацию видов государственного внешнего долга Российской Федерации и государственных внешних активов Российской Федерации.

Бюджетная классификация построена таким образом, группировка показателей дает представление о доходах, расходах бюджета, внутреннем и внешнем долге и др.

Бюджетная классификация, обязательная для всех учреждений и организаций страны.

Бюджетная классификация Российской Федерации в части классификации доходов бюджетов РФ, функциональной классификации расходов бюджетов РФ, экономической классификации расходов бюджетов РФ, классификации источников финансирования дефицитов бюджетов РФ является единой для бюджетов всех уровней бюджетной системы России.

Классификация видов расходов бюджета образует уровень функциональной классификации расходов бюджета РФ и детализирует направления финансирования расходов бюджета по целевым статьям.

Экономическая классификация расходов бюджетов РФ является группировкой расходов бюджетов всех уровней бюджетной системы РФ по их экономическому содержанию - текущие экономические расходы, капитальные расходы, предоставление кредитов, выплата процентов, капитальные вложения в основной капитал, закупки товаров, субсидии.

Классификация источников финансирования дефицита бюджета является группировкой заемных средств, привлекаемых Россией, субъектами РФ и органами местного самоуправления для покрытия дефицитов бюджетов.



Ведомственная классификация расходов федерального бюджета является группировкой расходов, отражающей распределение бюджетных средств по распорядителям средств бюджета. Этот перечень утверждается законом о федеральном бюджете на очередной финансовый год, в том числе затраты на содержание государственных комитетов, министерств, ведомств, т.е. выделение средств адресно.

Законодательство РФ устанавливает пределы применения бюджетной классификации и ее различных частей.

Так, классификация доходов бюджетов РФ, функциональная, экономическая классификация расходов, классификация источников внутреннего финансирования дефицитов бюджетов, классификация видов государственных внутренних долгов РФ и субъектов Федерации являются едиными и используются при составлении, утверждении и исполнении бюджетов всех уровней, а также при составлении консолидированных бюджетов всех уровней.

При этом законодательные (представительные) органы субъектов Федерации и органы местного самоуправления вправе при утверждении соответствующих бюджетов производить дальнейшую детализацию бюджетной классификации, не нарушая общих принципов построения и единства бюджетной классификации РФ.

Федеральный закон «О бюджетной классификации Российской Федерации» устанавливает пределы применения бюджетной классификации и ее отдельных частей.

Законодательные (представительные) органы субъектов Федерации и органы местного самоуправления вправе производить дальнейшую детализацию своих бюджетов, не нарушая общих принципов построения и единства бюджетной классификации РФ.

Классификация доходов бюджетов является группировкой доходов бюджетов всех уровней бюджетной системы и основывается на законодательных актах Российской Федерации, определяющих источники формирования доходов бюджетов всех уровней бюджетной системы.

В составе доходов бюджетов выделяются следующие основные группы:

Налоговые доходы;

Неналоговые доходы;

Безвозмездные перечисления;

Доходы целевых бюджетных фондов.

Группы доходов состоят из статей доходов, объединяющих конкретные виды доходов по источникам и способам получения, в том числе налоговые доходы по видам налогов, неналоговые доходы по видам доходов. Налоги делятся также на прямые и косвенные.

Наряду с налоговыми и неналоговыми доходами в бюджетах учитываются доходы от использования имущества, находящегося в государственной или муниципальной собственности. Учитываются и зачисляются, в бюджеты также средства, получаемые в процессе приватизации государственного и муниципального имущества.

Зачисляются в доход бюджетов штрафы, как правило, в местные бюджеты, суммы конфискаций, в принудительном порядке изымаемые в доход бюджетов в соответствии с законодательством и решениями судов.

Налоговые доходы подразделяются на собственные и регулирующие .

Собственныедоходы бюджетов - доходы, закрепленные законодательно на постоянной основе полностью или частично за соответствующими бюджетами. Финансовая помощь бюджетам не относится к собственным доходам бюджета.

Регулирующие доходы бюджетов - виды доходов, получаемые бюджетами в форме отчислений от собственных доходов бюджетов других уровней бюджетной системы в соответствии с установленными на определенный срок нормативами отчислений.

Нормативные отчисления определяются законом о бюджете того уровня бюджетной системы, который передает собственные доходы, либо законом о бюджете того уровня, который распределяет доходы бюджета другого уровня.

Установлены базовые нормативы отчислений в бюджеты субъектов Российской Федерации от таких налогов, как:

Налога на добавленную стоимость на товары (работы, услуги), производимые (выполняемые, оказываемые) на территории РФ;

Налога на прибыль предприятий (организаций);

Налога на доходы физических лиц;

Акцизов на спирт, водку и ликероводочные изделия, вырабатываемые на территории РФ;

Акцизов на товары, вырабатываемые на территории РФ;

Других федеральных налогов, подлежащих распределению между бюджетами разных уровней.

Функциональная классификация расходов бюджетов РФ является группировкой расходов бюджетов и отражает направление бюджетных средств на выполнение основных функций государства, в том числе на финансирование реализации нормативных правовых актов, принятых организациями государственной власти РФ и органами государственной власти субъектов РФ, на финансирование осуществления отдельных государственных полномочий, передаваемых на иные уровни власти. Отдельно выделяются расходы на содержание Президента РФ и полномочных представителей Президента РФ, Совета Федерации, Правительства РФ, прокуратуры, судов, фундаментальных исследований.

Первым уровнем функциональной классификации расходов бюджетов РФ являются разделы, определяющие расходование бюджетных средств: на государственное и местное управление, средств на выполнение функций государства, государственное управление и др. Функциональная классификация расходов бюджетов включает следующие разделы:

Государственное управление и местное самоуправление;

Судебная власть;

Международная деятельность;

Национальная оборона;

Правоохранительная деятельность и обеспечение безопасности государства;

Фундаментальные исследования и содействие научно-техническому прогрессу;

Промышленность, энергетика и строительство;

Сельское хозяйство и рыболовство;

Охрана окружающей природной среды и природных ресурсов, гидрометеорология, картография и геодезия;

Транспорт, дорожное хозяйство, связь и информатика;

Развитие рыночной инфраструктуры;

Жилищно-коммунальное хозяйство;

Предупреждение и ликвидация последствий чрезвычайных ситуаций и стихийных бедствий;

Образование;

Культура, искусство и кинематография;

Средства массовой информации;

Здравоохранение и физическая культура;

Социальная политика;

Обслуживание государственного долга;

Пополнение государственных запасов и резервов;

Финансовая помощь бюджетам других уровней;

Утилизация и ликвидация вооружений, включая выполнение международных договоров;

Мобилизационная подготовка экономики;

Исследование и использование космического пространства;

Прочие расходы;

Целевые бюджетные фонды.

В классификации расходов выделяются прочие расходы (резервные фонды Президента РФ, Правительства РФ, расходы на проведение выборов и референдумов, государственная поддержка завоза жильцов в районы Крайнего Севера).

Законодательные (представительные) органы субъектов Российской Федерации и органы местного самоуправления могут делать дальнейшую детализацию объектов бюджетной классификации РФ в части целевых статей и видов расходов, не нарушая общих принципов построения и единства бюджетной классификации РФ.

Классификация целевых статей расходов федерального бюджета образует третий уровень функциональной классификации расходов бюджетов и отражает финансирование расходов федерального бюджета по конкретным направлениям деятельности распорядителей средств.

Курс: 2. Дисциплина рассчитан на: 11 лекций (24 ч.). Кол-во лаб. занятий: 10 (20 ч).

Вопросы : Цель генной инженерии. Этапы становления генной инженерии. Методы генной инженерии. Методы переноса чужеродных генов в клетки. Рекомбинантные микроорганизмы. Получение рекомбинантных белков. Получение генетически модифицированных организмов. ДНК-технологии в растениеводстве. Трансгенез в растениеводстве.

Молекулярная биотехнология , (а) как ее видят авторы одноименного учебника Глик и Пастернак, это направление, возникшее на стыке биотехнологии и генной инженерии. (б) Другое определение – это направление, возникшее на стыке традиционной биотехнологии, молекулярной биологии и генетики. (в) Существует также определение молекулярной биотехнологии как объединения технологии рекомбинантной ДНК с промышленной микробиологией. Но такой молек. биотехнология была только на начальном этапе.

Главное направление генной инженерии - это перенос одного или нескольких генов из одного организма в другой. Центральным звеном генной инженерии является технология рекомбинантной ДНК. Изобретение способов конструирования новых организмов с чужеродными генами имел революционное значение для практической биологии. Как пишет, произошел переворот во взаимоотношения человека с живой природой.

Объектами генной инженерии являются : микроорганизмы, многоклеточные организмы, клеточные линии насекомых, растений, млекопитающих, вирусы бактерий, насекомых, растений, млекопитающих. В случае вирусов и организмов (а не клеток), генетически модифицированная самовоспроизводящаяся биологическая единица часто является конечным продуктом биотехнологии. Наиболее часто используемыми генно-модифицированными микроорганизмами являются E. coli и Sacch. cerevisiae .

Основные группы продуктов биотехнологии , связанных с генной-инженерией: (1) органы или биомасса с/х растений (урожай), (2) органы или биомасса с/х животных (продукция животноводства), (4) полезные метаболиты микроорганизмов, (5) вакцины, диагностические вещества (белки, используемые для иммунодиагностики), (6) лекарства, (7) штаммы микроорганизмов, создаваемые для биодеградации нежелательных веществ.

Если целью генной инженерии является создание организма-продуцента белка , то существуют 2 варианта реализации данной цели: (а) получение известного белка, только на основе организма, взятого в качестве биофабрики, который данный белок не вырабатывает, либо (б) получение искусственно сконструированного белка, т.е. того, который ранее не существовал в природе. Т.е. во втором случае имеет место белковая инженерия через посредничество белок-кодирующего гена.

С другой стороны, существуют 2 типа продуцентов чужеродных белков: секретирующие и несекретирующие белок в окружающую среду.

Главные этапы создания генно-модифицированных организмов:

(1) выбор собственно продукта, который будет получен на основе организма;

(2) выбор подходящего организма-продуцента;

(3) конструирование вектора – молекулярного переносчика ДНК в клетку хозяина;

(3а) выделение тотальной ДНК из клетки-инсточника гена;

(3б) выделение отдельно взятого гена;

(3в) подбор вектора;

(3г) введение в вектор гена, кодирующего фенотипический маркер;

(3д) «сшивка» гена с вектором;

(4) введение ДНК (вектора) в клетку (организм) хозяина;

(5) отбор успешно трансформированных клеток или организмов;

(6) обеспечение правильного функционирования нового гена в организме нового хозяина (оптимизация экспрессии);

(7) при необходимости – модификация клонированных (введенных в новый организм, чужеродных) генов на уровне нуклеотидов, с целью их улучшения.

Векторы: интегративные и неинтегративные.

Векторами,используемыми в различных организмах-продуцентах, являются :

для бактерий – вирусы (бактериофаги) и плазмиды

для грибов – плазмиды

для растений – плазмиды агробактерий; применяется также бомбардировка микрочастицами (биолистика). Материал – золото или вольфрам, диам. 0.4-1.2 мкм. Частицы покрывают молекулами ДНК. Обстрел такой дробью производится из порохового пистолета. Благодаря высокой плотности о большой скорости, микродробь пробивает клеточные стенки и мембраны, и ДНК затем каким-то неизвестным способом встранивается в геном.

для животных – вирусы

Краткая история и коммерциализация молекулярной биотехнологии.

Впервые перенос чужеродного гена в клетку (бактерии E. coli ) был произведен в 1973 г.: Cohen, Boyer и Berg (Коэн, Бойер и Берг) ввели с помощью плазмидного вектора и заставили клонироваться фрагмент ДНК лягушки в клетке бактерии. Правда, этот ген не был белок-кодирующим, он кодировал рибосомальную РНК.

Примечательно, что научное сообщество отреагировало на открытие новой технологией мораторием на некоторые генно-инженерные экперименты. Причем в числе ученых, наложивших подобный мораторий, были сами Коэн и Бойер. Ученые фактически испугались, что в результате объединения генов из разных организмов может привести к возникновению организма с нежелательными и опасными свойствами. Постепенно были согласованы условия безопасности проведения подобных работ, и излишние страхи по поводу генно-инженерных экспериментов улеглись.

Какие надежды и опасения связаны с генно-инженерными организмами:

надежды – диагностика, профилактика и лечение инфекционных и генетических заболеваний; повышение урожайности с.-х. культур путем создания устойчивых растений; создание микроорганизмов-продуцентов; создание улучшенных пород животных; переработка отходов;

опасения – не будут ли сконструированные организмы вредны для других организмов и окружающей среды; не приведет ли распространение генно-модифицир. организмов к сокращению существующего генетического разнообразия; правомочно ли изменять генетическую природу человека генно-инженерными методами; следует ли патентовать генно-инженерных животных; не нанесет ли молекулярная биотехнология ущерб традиционному сельскому хозяйству … и еще ряд опасений социального и экономического толка.

КАРТАХЕНСКИЙ ПРОТОКОЛ ПО БИОБЕЗОПАСНОСТИ
к Конвенции о биологическом разнообразии

Монреаль, Канада, 29 января 2000 г. (adoption of the Cartagena Protocol and interim arrangements. Cartagena, Colombia 22 - 23 February 1999 and Montreal, Canada, 24 - 28 January 2000)

The Cartagena Protocol on Biosafety to the Convention on Biological Diversity is an international agreement which aims to ensure the safe handling, transport and use of living modified organisms (LMOs) resulting from modern biotechnology that may have adverse effects on biological diversity, taking also into account risks to human health. It was adopted on 29 January 2000 and entered into force on 11 September 2003.

Статья 1. Цель

В соответствии с принципом принятия мер предосторожности, содержащимся в Принципе 15 Рио-де-Жанейрской декларации по окружающей среде и развитию, цель настоящего Протокола заключается в содействии обеспечению надлежащего уровня защиты в области безопасной передачи, обработки и использования живых измененных организмов, являющихся результатом применения современной биотехнологии и способных оказать неблагоприятное воздействие на сохранение и устойчивое использование биологического разнообразия, с учетом также рисков для здоровья человека и с уделением особого внимания трансграничному перемещению.

Статья 2. Общие положения

1. Каждая Сторона принимает необходимые и соответствующие правовые, административные и другие меры для выполнения своих обязательств, предусмотренных в рамках настоящего Протокола.
2. Стороны обеспечивают, чтобы получение любых живых измененных организмов, их обработка, транспортировка, использование, передача и высвобождение осуществлялись таким образом, чтобы не допускались или были уменьшены риски для биологического разнообразия, с учетом также рисков для здоровья человека.
3. Ничто в настоящем Протоколе никоим образом не наносит ущерба суверенитету государств в отношении их территориального моря, определенного в соответствии с международным правом, и их суверенным правам и юрисдикции, которыми государства обладают в своих исключительных экономических зонах и в границах их континентальных шельфов в соответствии с международным правом, а также осуществлению морскими и воздушными судами всех государств навигационных прав и свобод, предусмотренных международным правом и закрепленных в соответствующих международных документах.
4. Ничто в настоящем Протоколе не интерпретируется как ограничение права Стороны принимать меры, обеспечивающие более высокий уровень защиты в отношении сохранения и устойчивого использования биологического разнообразия, чем тот, который предусмотрен в настоящем Протоколе, при условии, что такие меры соответствуют цели и положениям настоящего Протокола и согласуются с другими обязательствами данной Стороны в рамках международного права.
5. Стороны поощряются принимать в соответствующих случаях во внимание имеющиеся экспертные знания, договоренности и результаты работы, проделанной на международных форумах, обладающих компетенцией в области рисков для здоровья человека.

Механизм мер по биобезопасности: (1) сбор сведений о создании генно-инженерных организмов в данном государстве; (2) контроль за мерами их поддержания в замкнутых системах; (3) проверка безопасности организма для биоразнообразия в случае высвобождения; (4) контроль трансгарничного перемещения генно-инженерных организмов.

Человеческое ДНК и его влияние на судьбу человека


Сегодня вашему вниманию хочу предоставить очень интересную информацию о человеческом ДНК и его влиянии на судьбу человека. Познакомьтесь с материалами из книги Грэгга Брейдена – «Божественная матрица: время, пространство и сила сознания».

Эксперимент № 1

Специалист в области квантовой биологии Владимир Попонин опубликовал результаты эксперимента, проведенного им в Российской академии наук вместе с коллегами, среди которых был Петр Гаряев. Статья вышла в США. В ней описывается прямое воздействие человеческой ДНК на физические объекты, осуществляемое, по мнению авторов, посредством какой-то новой энергетической субстанции. Мне думается, что эта энергетическая субстанция не такая уж «новая». Она существует испокон веков, но его не фиксировали имевшиеся ранее приборы.

Попонин повторил свой эксперимент в одной из американских лабораторий. Вот что он пишет о найденном им так называемом «фантомном эффекте ДНК»: «На наш взгляд, это открытие имеет огромный потенциал для объяснения и более глубокого понимания механизмов, которые лежат в основе тонких энергетических явлений, в частности, наблюдаемых в альтернативных медицинских практиках».

В эксперименте Попонина и Гаряева исследовалось действие ДНК на частицы света (фотоны) - квантовые кирпичики, из которых состоит все в нашем мире. Из стеклянной трубки откачали весь воздух, создав в ней искусственный вакуум. Традиционно считается, что вакуум означает пустое пространство, но в то же время известно, что фотоны там все-таки остаются. С помощью специальных датчиков ученые определили местонахождение фотонов в трубке. Как и предполагалось, они хаотично занимали все ее пространство. Затем в трубку поместили образцы человеческой ДНК. И тут фотоны повели себя совершенно неожиданным образом. Казалось, ДНК благодаря какой-то невидимой силе организует их в упорядоченные структуры. В арсенале классической физики объяснения этому явлению не нашлось. И тем не менее исследование показало - ДНК человека оказывает прямое воздействие на квантовую основу материального мира.

Еще один сюрприз ждал ученых, когда они извлекли ДНК из трубки. Логично было предположить, что фотоны вернутся к своему изначальному хаотичному расположению. Согласно исследованиям Майкельсона-Морли (их эксперимент был описан выше), ничего иного произойти не могло. Но вместо этого ученые обнаружили совершенно иную картину: фотоны в точности сохраняли порядок, заданный молекулой ДНК.

Перед Попониным и его коллегами стояла нелегкая задача - дать объяснение тому, что они наблюдали. Что продолжает воздействовать на фотоны, когда ДНК извлечена из трубки? Может быть, молекула ДНК оставила что-то после себя, какую-то силу, сохраняющую свое действие даже после перемещения ее физического источника? А может, исследователи столкнулись с каким-то мистическим феноменом? Не осталось ли между ДНК и фотонами после их разделения какой-то связи, которую мы не в силах зафиксировать? В заключительной части статьи Попонин пишет: «Мы с коллегами вынуждены принять рабочую гипотезу о том, что в процессе эксперимента было возбуждено действие некоей новой полевой структуры»». Поскольку наблюдаемый эффект был связан с присутствием живого материала, данный феномен назвали «фантомным эффектом ДНК». Найденная Попониным полевая структура весьма напоминает «матрицу» Планка, а также описания, встречающиеся в древних текстах. Какой вывод мы можем сделать из эксперимента Полонина? Главные герои этого эксперимента - человек и его ДНК, которая на квантовом уровне способна оказывать влияние на окружающий нас мир и всю Вселенную.

Резюме эксперимента № 1.

Данный эксперимент важен для нас по ряду причин. Прежде всего, он показывает прямую связь между ДНК и энергией, из которой сотворен мир. Вот наиболее существенные из выводов, которые можно сделать на основании наблюдаемого в данном эксперименте явления:

Существует энергетическое поле, которое до сих пор не было зафиксировано.

Посредством этого энергетического поля ДНК воздействует на материю. Итак, в условиях строжайшего лабораторного контроля было засвидетельствовано, что ДНК меняют поведение частиц света - основы всего сущего. Мы убедились в том, о чем давно говорилось в духовной литературе, - в собственной способности влиять на окружающий мир. В контексте двух следующих экспериментов этот вывод приобретет еще большее значение.

Эксперимент № 2

В 1993 году журнал Advances опубликовал отчет об исследованиях, проводившихся в армии США. Задача этих исследований заключалась в выяснении влияния чувств человека на образцы его ДНК, помещенные на расстоянии. У испытуемого изо рта брали пробу ткани с ДНК. Образец помещали в другой комнате того же здания в специальной камере, снабженной электрическими датчиками, которые фиксировали, какие изменения происходят в наблюдаемом материале в ответ на чувства испытуемого, находящегося на расстоянии нескольких сотен метров.

Затем испытуемому показывали специальную подборку видеоматериалов, вызывающих у человека наиболее сильные чувства, - от жестоких военных документальных фильмов до комедийных и эротических сюжетов.

В моменты эмоциональных «пиков» испытуемого образцы его ДНК, которые, повторим, находились на расстоянии сотен метров, реагировали сильными электромагнитными возбуждениями. Иными словами, они вели себя так, будто по-прежнему оставались частью организма-хозяина. Но почему?

В связи с этим экспериментом я должен сделать одну ремарку. Во время нападения 11 сентября на Всемирный Торговый Центр и Пентагон я был в турне по Австралии. По приезде в Лос-Анджелес мне стало ясно, что я вернулся совсем не в ту страну, из которой уезжал десять дней назад. Никто не путешествовал - аэропорты и стоянки перед ними пустовали. Вскоре после возвращения мне предстояло выступить на конференции в Лос-Анджелесе. Было ясно, что в такой ситуации на конференцию приедут очень немногие, однако ее организаторы решили не менять программу. Наши опасения оправдались в первый же день: казалось, что докладчики выступали друг для друга.

Мое выступление было посвящено взаимосвязи вещей, и в качестве заключительного примера я сослался на эксперимент в армии США. Во время обеда ко мне подошел человек, представившийся доктором Кливом Бакстером, поблагодарил за выступление и сказал, что разработчиком этого эксперимента с ДНК в рамках более крупного исследовательского проекта был именно он. Его исследования в военной сфере начались после новаторской работы по изучению воздействия человеческих чувств на растения. Доктор Бакстер рассказал мне, что после того, как армия США закрыла исследовательский проект, он со своей командой продолжил те же исследования уже на гораздо больших расстояниях.

Они начали с расстояния в 350 миль, и для замера промежутка времени между действующим на испытуемого эмоциональным стимулом и реакцией образца его ДНК использовали атомные часы в Колорадо. Так вот, никакого временного промежутка между разделенными сотнями миль эмоциональным стимулом и электрическим возбуждением ДНК не было. Все происходило одновременно Вне зависимости от расстояния образцы ДНК реагировали так, словно оставались частью тела испытуемого. Как красноречиво заметил по этому поводу коллега Бакстера, доктор Джеффри Томпсон, «Нет такого места, где наше тело на самом деле заканчивается или начинается».

Так называемый здравый смысл говорит нам, что такой эффект невозможен. Откуда ему взяться? Ведь эксперимент Майкельсона и Морли 1887 года показал, что никакого поля, связывающего между собой все вещи, не существует. С точки зрения здравого смысла, если физически отделить от тела любую ткань, орган или кость, между ними не останется никакой связи. Но выясняется, что в действительности это не так.

Резюме эксперимента № 2.

Эксперимент Бакстера заставляет задуматься о серьезных и даже немного пугающих вещах. Раз мы не можем полностью отделить от человеческого тела даже мельчайшую его часть, значит ли это, что после трансплантации органа от одного человека к другому они становятся соединенными друг с другом?

Каждый день большинство из нас вступает в контакт с десятками и даже сотнями людей. И всякий раз, когда мы жмем человеку руку, на нашей ладони остаются его клетки кожи и ДНК. Мы же, в свою очередь, передаем свою ДНК ему. Значит ли это, что мы сохраняем связь со всеми теми людьми, с которыми нам довелось вступить в физический контакт? И если так, то насколько такая связь глубока? На первый вопрос мы должны ответить утвердительно: да, связь сохраняется. Что же касается ее глубины, тут, видимо, все дело в том, насколько она нами осознается. Вот почему этот эксперимент так важен для нас. Кроме того, он заставляет задуматься о следующем: если образец ДНК испытуемого реагирует на его чувства, значит, должно быть что-то, служащее проводником подобных сигналов, верно? Может быть, да, а может быть, и нет. Не исключено, что результаты эксперимента Бакстера ведут совсем К другому выводу - настолько простому, что его легко не заметить. Вполне вероятно, что эмоциональные сигналы испытуемого и не должны были никуда перемещаться. Почему бы не предположить, что чувства испытуемого возникали не только в его сознании, но и повсюду вокруг, в том числе и в удаленном на большое расстояние образце его ДНК? Говоря это, я слегка намечаю некоторые удивительные возможности, о которых мы подробнее поговорим далее.

Как бы то ни было, эксперимент Бакстера доказывает следующее:
  1. Живые ткани связаны неизвестным ранее энергетическим полем.
  2. Посредством этого энергетического поля клетки тела и выделенные образцы ДНК поддерживают между собой связь.
  3. Человеческие чувства оказывают прямое воздействие на выделенные образцы ДНК.
  4. Данный эффект одинаково проявляется на любом расстоянии.
Эксперимент № 3

Несмотря на то что действие чувств на здоровье и иммунитет человека отмечается различными духовными традициями с незапамятных времен, оно было научно доказано лишь недавно. В 1991 году сотрудники Института математики сердца разработали программу изучения воздействия чувств на организм. При этом основное внимание исследователей было направлено на то место, где возникают чувства, а именно - на человеческое сердце. Это новаторское исследование было опубликовано в престижных журналах и часто цитируется в научных работах. Одним из наиболее ярких достижений Института стало открытие концентрирующегося вокруг сердца и выходящего за пределы тела энергетического поля, имеющего форму тора диаметром от полутора до двух с половиной метров (см. рис.1).


Рис. 1. На иллюстрации показана форма и приблизительный размер энергетического поля вокруг человеческого сердца. (С любезного разрешения Института математики сердца.)

Хотя нельзя утверждать, что это поле является праной, описанной в санскритской традиции, возможно, оно зарождается именно из нее.

Эксперимент проводился в период с 1992 по 1995 год. Ученые поместили образец ДНК человека в пробирку и подвергли ее воздействию так называемых когерентных чувств. Ведущие специалисты этого эксперимента Глен Рейн и Ролин Маккарти поясняют, что когерентное эмоциональное состояние может быть вызвано по собственной воле «с помощью особой техники самоконтроля, позволяющей успокоить сознание, переместить его в область сердца и сосредоточить на позитивных переживаниях». В эксперименте участвовали пятеро испытуемых, специально обученных этой технике.

Результаты эксперимента неоспоримы. Человеческие чувства действительно изменяют форму молекулы ДНК в пробирке! Участники эксперимента воздействовали на нее комбинацией «направленного намерения, безусловной любви и особого мыслеобраза молекулы ДНК», - иными словами, не прикасаясь к ней физически. По словам одного из ученых, «различные чувства по-разному влияют на молекулу ДНК, заставляя ее то закручиваться, то раскручиваться». Очевидно, что эти выводы совершенно не вяжутся с представлениями традиционной науки.

Мы привыкли к мысли, что ДНК в нашем организме неизменна, и считаем ее вполне стабильной структурой (если только не воздействовать на нее наркотиками, химическими препаратами или электромагнитным излучением). Дескать, «что получили при рождении, с тем и живем». Данный эксперимент показал, что подобные представления далеки от истины. А вот какую информацию в своем блоге поместил Марк Ифраимов.

слепое служение

В 1983 году американка Барбара Мак-Клинток получила Нобелевскую премию по физиологии и медицине «за открытие подвижных элементов генома (транспозирующих генетических систем)».

Еще за тридцать лет до вручения премии, в 1951 году, она смогла четко сформулировать модель генетической системы. Если вас интересует описание этого открытия научным языком, вы можете прочитать об этом здесь. Я же вам опишу это открытие простым языком. До открытия Барбары Мак-Клинток бытовало представление о геноме, как о СТАТИЧНОМ наборе правил, передающихся из поколения в поколение.

Геном - совокупность наследственного материала, заключенного в клетке организма. Геном содержит биологическую информацию, необходимую для построения и поддержания организма.

Мак-Клинток доказала, что в ДНК есть мигрирующие гены, которые под влиянием стресса могут менять свое местоположение и тем самым регулировать выживаемость вида. В Нобелевской лекции Мак-Клинток заявила, что «шоковые воздействия» на генетический материал (какие угодно - от воздействий на клеточном уровне и вирусных инфекций до изменений в состоянии окружающей среды) «заставляли геном перестраиваться», чтобы справиться с угрозой. Наши собственные эмоции и убеждения, а также те, что мы унаследовали от своих предков, влияют на нашу ДНК…

Говоря самым простым языком, наши гены реагируют на эмоции и от этого мутируют, передавая информацию о мутации следующим поколениям, чтобы те могли выжить.

Чтобы вы могли переложить это знание на свою жизнь, приведу простой пример, наглядно демонстрирующий, почему многие женщины не могут создать отношения с мужчиной. 1943 год. Женщина получает “похоронку” на любимого мужа. Она переживает горе, крушение всех своих женских надежд на счастье в семье. Жить не хочется, боль в душе давит камнем, и нет никакого выхода: остались дети, которых несмотря ни на что надо растить и поднимать. Организм женщины испытывает колоссальный стресс, ее клетки мутируют, запоминая информацию: когда теряешь мужчину, становится нестерпимо больно.

Потеряв кормильца и надежду быть счастливой женщиной, она сама становится главным добытчиком в семье, работает, работает, работает. Так легче пережить одиночество, забыться и не думать о себе.

Годы идут и ее дочь вырастает и находит себе спутника жизни, выходит замуж, рождаются дети. Казалось бы, все плохое забыто вместе с войной. Дети растут, наслаждая взор родителей и героини нашего рассказа, ставшей уже бабушкой.

Бабушка, как и прежде, отдает всю себя детям, внукам. Она не вышла замуж, посчитав, что женщине надо уделять время семье, а не ухажерам. Да и не было их особо, если уж говорить честно.

Подошло время внучке выходить замуж, и вроде ладная она, да статная, но никак не выходят у нее отношения с избранниками. Этот ей не подходит, другой сам бежит прочь, а третий уж совсем ни рыба, ни мясо. И вот уж ей 36. В душе страх, не хочется ей провести жизнь без семьи. Более всего она мечтает о том, как подарит свою любовь единственному и желанному, но…

Каждый раз при возникновении отношений, она… тупит. Словно сомнамбула входит в замешательство и леденеет, впрочем, сама не замечая того. А когда мужчина говорит ей, что она равнодушная, начинает упрекать его, что он сам такой. Мол, не может принять ее такой, какая она есть и все чего-то требует от неё. “Повывелись мужчины, слабаками стали ”, – жалуется она своей престарелой бабушке.

Если бы они обе знали, что решение бабушки: “когда теряешь мужчину становится нестерпимо больно” сейчас управляет судьбой внучки, Но решение было принято так давно, что забыто в глубинах подсознания и… цепочек ДНК.

Снаружи то, что глубоко внутри. Эту истину слышали многие, но не знают, что таят в себе их гены. Вновь и вновь, желая яркой счастливой жизни, задумываясь о своей мечте, мы вроде начинаем зажигаться энтузиазмом, но уже через секунду-другую что-то смутное и непонятное вводит нас в ступор и мы начинаем переключаться на текущие дела, как будто они важнее нашей мечты.

Так мы преданно служим тому, кто когда-то до нас, первый в нашей семье запретил себе такую же мечту. Его убеждения стали нашими, его ДНК мы носим в себе.

Наше детское слепое служение этому предку ему на самом деле не нужно. Бабушке не нужно, чтобы внучка была одинокой, как она, но бабушкино решение – это неизбежность судьбы внучки.

Привычное становится неизбежным, потому что оно является частью нашего существа. Мы состоим из него нашими ДНК, нашими генетическими кирпичиками.

Неизбежность одинокой судьбы внучки будет продолжаться до тех пор, пока она не возмутится своему замешательству, пока не захочет разобраться с причиной, по которой она не может получить то, что хочет.

Каждый раз, глядя на привычные для себя вещи: зарплату, отношения, здоровье, свой собственный статус в обществе, спросите себя: А устраивает ли это меня?

И сквозь жесткий контроль своих ДНК, застилающий разум, почувствуйте, может быть внутри вас есть протест против привычного и неизбежного?

И если протест все-таки есть, просто скажите себе: Я могу получить то, что хочу. Я могу начать другую жизнь.

Просто подумайте так. Скажите это вслух. Начните «ваять» свою душу, осознанно, прикладывая усилия, добровольно приняв решение развиваться и становиться ТЕМ, КЕМ ВЫ ВСЕГДА ХОТЕЛИ БЫТЬ.

В мире уже есть способы, как исправить мутацию ДНК. Вам надо найти того предка, который отказался быть счастливым и стал жертвой обстоятельств. Найти его и принять его в сердце. Потому что вы и так его любите. Вы служите ему всю свою жизнь. Но только неосознанно. Так служите теперь по-настоящему. С любовью в сердце. Делая то, что ему не удалось.

Этот предок начнет помогать вам и теперь вы вдвоем вместе с ним будете достигать вашей общей цели. Путь станет и радостнее, и быстрее.

В передаче “Тайны мира с Анной Чапман” от 01.08.2013,

https://www.youtube.com/watch?v=mmkytxVmHWs

ученые убедительно рассказали о том, что слова и ДНК созданы по одинаковым принципам. То есть цепочки ДНК – это “предложения”, которые записывают, как слова, опыт человека.

Обратите в ролике внимание на слова Петра Гаряева: “Сами хромосомы построены по принципу человеческой речи”. Другими словами, хромосомы состоят из “букв”, которыми можно В ТЕЧЕНИЕ ЖИЗНИ переписывать записи о судьбе. И эти измененные записи (мутации) будут влиять на младших по роду, делать им жизнь легче или труднее.

Выходит, что ДНК – это некая Книга Судьбы, которая не только хранит информацию об опыте старших, но и ПОСТОЯННО ПЕРЕПИСЫВАЕТСЯ, в зависимости от переживаемых человеком эмоций.

Посмотрите ролик, многое станет ясно.

Хочется, чтобы читатель уяснил для себя главную идею: Чувства и эмоции подавлять нельзя. Вытесненные чувства становятся негативными программами для ваших детей.

Проживайте свои чувства, делитесь своими переживаниями с близкими, разговаривайте о том, что вас беспокоит.

Помните: то, что подавили предки, проявляют детки. Разве вы хотите, чтобы спрятанное глубоко внутри вашего подсознания, стало реальностью ваших детей?

ДНК меняется в течение жизни! Своими чувствами вы сами пишите программы для детей, внуков и правнуков, которые вынуждены будут перепроживать ваши чувства и чувства ваших родителей, бабушек и дедушек, если вы не осознаете свой опыт.

И в заключение, хорошая весть: если ДНК зависит от чувств и меняется в течение жизни,

И в заключении

…Научное открытие, сделанное в конце 90-х годов ХХ века. Это открытие сочли очень (вот просто очень!) значимым – поэтому оно и отмечено Нобелевской премией (за 2002 год)

Речь идет об открытии гена смерти.

Сбросьте напряжение. Это только название неприятное, на самом деле обнаруженный учеными ген больше отвечает за жизнь — ведь он регулирует механизм по имени «апоптоз»*, без которого невозможен процесс регенерации (обновления тканей).

*Апоптоз – это явление, без которого была бы невозможна сама жизнь.

Апоптоз начинает работать уже в человеческих эмбрионах, когда в процессе формирования в соответствии с высшей логикой исчезают клетки жабр, хвоста и других рудиментных органов. В процессе жизни апоптоз выступает как мудрый санитар – убирает старые клетки, а их биоэнергетический материал направляет на строительство новых клеток. Открытие гена смерти (ну что поделаешь – так назвали) вызвало в научных кругах две противоположных эмоции: одни испытали панический страх, а другие – страстную надежду.

Почему испугались одни? И отчего так воодушевились другие? А просто призадумались над темой о природных механизмах поведения «отработанных» клеток.

… Известно, что клетка, которая, что называется, свое отжила, может покидать этот мир по одному из двух сценариев.

Первый сценарий – это уже рассмотренный нами апоптоз, когда гибель старой клетки приносит максимальную пользу потомству – уходящая из жизни клетка отдает свой биоматериал своим деткам, да еще и обеспечивает их мощной энергией, которая в большом количестве возникает при распаде клеточного ядра. Согласитесь – по-настоящему самоотверженное поведение. Поистине родительское – сам погибни, а потомство обеспечь.

Второй сценарий – это некроз клетки. В этом сценарии старая клетка НЕ получает команды умереть «по-апоптозовски». При некрозе клетка обесточивается – ее как бы отключают. И от этого клетка начинает разлагаться. И нет уже никакого самоотверженного подвига во имя жизни других, нет никакой энергии, а есть чистая патология — клетка, погибшая в сценарии некроза, становится очагом заразы. Такая клетка закладывает фундамент болезни.

…Сама по себе информация об апоптозе и некрозе может быть интересной, но только отчасти, и только для специалистов — для обывателей что апоптоз, что некроз часто кажется лишь пустым звуком. Если бы ни вот это щекочущее душу обстоятельство: сценарий своей гибели клетка выбирает НЕ сама. Клетка погибает, выполняя четкую команду. И никаких случайностей в этом деле нет – это строго взвешенное решение. Кто (или что) отдает команду? И кто (или что) решает, какую именно команду отдать клетке: умереть с пользой или умереть, образовав болезнь?

… Я не стану разматывать ту длинную цепочку, по которой ученые добираются до ответов на эти вопросы – простыми словами эти поиски не опишешь, а наукообразными выкладками я рискую вас усыпить. А у меня совсем другая задача. Поэтому и за угол не стану заводить.

Вот к каким предварительным выводам пришли ученые: Оба сценария гибели старых клеток заложен в ген смерти. При этом апоптоз – это автоматическая функция, и ее ген выполняет самостоятельно.

А вот некроз… Некроз является спящей функцией. И сам ген эту функцию разбудить НЕ может. Она активируется командой ДНК. Команду на некроз ДНК отдает тогда…

Внимание!

Сценарий некроза возникает при наличии устойчивой энергии отрицательных эмоций! Понимаете?! Когда энергия отрицательных эмоций становится доминирующей (т.е. ее в периоде больше, чем энергии положительных эмоций), ДНК формирует программу распада – и передает ее в ген смерти (неудачное все-таки название) Этой передачей функция некроза и выводится из спящего состояния.

И она не просто просыпается – функция некроза становится постоянно активной. (т.е. все большее количество клеток получает команду умереть в сценарии некроза)

Есть весомая добавка: функция активна вплоть до особых распоряжений ДНК — в том смысле, что ДНК при определенных условиях может «размонтировать» программу распада и «отозвать полномочия» у гена-исполнителя. И тогда функция некроза опять засыпает.

Это предположение. Но уже не зыбкое. Потому что у него есть прочная основа – плацебо-эффект. Нам еще предстоит открыть секрет этого волшебного эффекта – и тогда мы получим ключ к произвольному управлению собственным здоровьем.

Но функция некроза всегда остается потенциальной – мол, только дай знать, что ты недоволен жизнью, и я все сделаю – заполоню тебя некрозными клетками, а они остановят твою биологическую жизнь.

…Разумеется, по поводу приведенных выводов еще идут горячие споры. И конечно, в полной мере эмпирическими эти выводы не назовешь – пока их клеймят за гипотетичность (предположительность). Как клеймят и тех ученых, которые, рассмотрев в структуре ДНК тень продолжения спирали, твердо убеждены, что биохимический уровень – это только крохотная часть того, что мы знаем про свой геном.

И что эта часть управляется духовной составляющей ДНК.

Однако споры имеют явную тенденцию к затуханию – ведь никто уже не сомневается, что наиболее активные разрушительные процессы запускают именно отрицательные эмоции.

И сильнее разрушителей просто нет. (Только химикаты могут с ними посоревноваться)

Как не осталось уже сомнений, что делать ставку на «волшебные» таблетки и уколы (изобретенные и еще нет) просто в высшей степени наивно – ведь ларчик открывается совсем не там.

Но вы знаете: это то копье, которое одинаково остро заточено с обоих концов – куда направляем, того и достигаем. Самый простой вывод, который можно сделать из всей этой научной информации – это Мы сами творцы своей реальности. кликните здесь мышкой

Не удалось найти решение своей ситуации с помощью этой, статьи?

Вы решили, что вам нужны изменения?

Надоело ходить по замкнутому кругу и наступать на одни и те же грабли?

Обращайтесь. Буду рада новым клиентам из любой точки планеты!

Проект «Геном человека» является наиболее амбициозной биологической исследовательской программой за всю историю науки. Знание генома человека внесет неоценимый вклад в развитие медицины и биологии человека. Исследования человеческого генома так же необходимо человечеству, как когда-то было необходимо знание человеческой анатомии. Осознание этого пришло в 1980-х, и это привело к тому, что появился проект «Геном человека». В 1988-м с аналогичной идеей выступил выдающийся российский молекулярный биолог и биохимик, академик А. А. Баев (1904–1994). С 1989 г. и в США, и в СССР функционируют соответствующие научные программы; позднее возникла Международная организация по изучению генома человека (HUGO). Вклад России в международное сотрудничество признан в мире: 70 отечественных исследователей являются членами HUGO.

Итак, прошло 10 лет с того времени, когда проект «Геном человека» был завершен. Есть повод вспомнить, как это было...

В 1990 г. при поддержке министерства энергетики США, а также Великобритании, Франции, Японии, Китая и Германии, был запущен этот трехмиллиардный проект. Возглавил его д-р Фрэнсис Коллинз, глава . Целями проекта являлись:

  • идентификация 20 000–25 000 генов ДНК;
  • определение последовательности 3 млрд. пар химических оснований, составляющих ДНК человека, и сохранение этой информации в базе данных;
  • усовершенствование приборов для анализа данных;
  • внедрение новейших технологий в область частного использования;
  • исследование этических, правовых и социальных вопросов, возникающих при расшифровке генома.

В 1998 г. аналогичный проект был запущен д-ром Крейгом Вентером и его фирмой «Celera Genomics ». Д-р Вентер поставил перед своей командой задачу более быстрого и дешевого секвенирования человеческого генома (в отличие от трехмиллиардного международного проекта, бюджет проекта д-ра Вентера ограничивался 300 млн долл.). Кроме того, фирма «Celera Genomics » не собиралась открывать доступ к своим результатам.

6 июня 2000 г. президент США и премьер-министр Великобритании объявили о расшифровке человеческого генетического кода, и таким образом соревнование закончилось. На самом деле, был опубликован рабочий черновик человеческого генома, и лишь к 2003 г. он был расшифрован практически полностью, хотя и сегодня все еще проводят дополнительный анализ некоторых участков генома.

Тогда умы ученых были взбудоражены необыкновенными возможностями: новые, действующие на генетическом уровне лекарства, а значит, не за горами создание «персональной медицины», настроенной точно под генетический характер каждого отдельно взятого человека. Существовали, конечно, и опасения, что может быть создано генетически зависимое общество, в котором людей буду делить на высшие и низшие классы по их ДНК и соответственно ограничивать их возможности. Но все же была надежда, что этот проект окажется столь же прибыльным, сколь и Интернет.

И вдруг все затихло... надежды не оправдались... казалось, что 3 млрд долл., вложенных в эту затею, выброшены на ветер.

Нет, не совсем так. Быть может, полученные результаты не столь грандиозны, как предполагалось во времена зарождения проекта, но они позволят достичь в будущем значительных успехов в различных областях биологии и медицины.

В результате исполнения проекта «Геном человека» был создан открытый банк генокода. Общедоступность полученной информации позволила многим исследователям ускорить свою работу. Ф. Коллинз привел в качестве иллюстрации такой пример: «Поиск гена фиброзно-кистозной дегенерации был успешно завершен в 1989 г., что стало результатом нескольких лет исследований моей лаборатории и еще нескольких других и стоило США около 50 млн долл. Сейчас это способен сделать смышленый выпускник университета за несколько дней, и все, что ему понадобится, - это Интернет, несколько недорогих реактивов, термоциклический аппарат для увеличения специфичности сегментов ДНК и доступ к ДНК-секвенатору, читающему ее по световым сигналам».

Еще один важный результат проекта - дополнение истории человека. Раньше все данные об эволюции были почерпнуты из археологических находок, а расшифровка генокода не только дала возможность подтвердить теории археологов, но в будущем позволит точнее узнать историю эволюции как человека, так и биоты в целом. Как предполагается, анализ сходства в последовательностях ДНК различных организмов сможет открыть новые пути в исследовании теории эволюции, и во многих случаях вопросы эволюции теперь можно будет ставить в терминах молекулярной биологии. Такие важнейшие вехи в истории эволюции, как появление рибосомы и органелл, развитие эмбриона, иммунной системы позвоночных, можно будет проследить на молекулярном уровне. Ожидается, что это позволит пролить свет на многие вопросы о сходстве и различиях между людьми и нашими ближайшими сородичами: приматами, неандертальцем (чей генокод недавно был реконструирован из 1,3 млрд фрагментов, подвергавшихся тысячелетнему разложению и загрязненных генетическими следами археологов, державших в руках останки этого существа), а также и всеми млекопитающими, и ответить на вопросы: какой же ген делает нас Homo sapiens , какие гены отвечают за наши поразительные таланты? Таким образом, поняв, как прочитать информацию о нас в генокоде, мы сможем узнать, как гены влияют на физические и умственные характеристики и даже на наше поведение. Возможно, в будущем, посмотрев на генетический код, можно будет не только предсказать, как будет выглядеть человек, но и, к примеру, будет ли у него актерский талант. Хотя, естественно, никогда нельзя будет это определить со 100%-ной точностью.

Кроме того, межвидовое сравнение покажет, чем отличается один вид от другого, как они разошлись на эволюционном древе. Межпопуляционное сравнение покажет, как этот вид эволюционирует. Сравнение ДНК отдельных особей внутри популяции покажет, чем объясняется различие особей одного вида, одной популяции. Наконец, сравнение ДНК различных клеток внутри одного организма поможет понять, как происходит дифференцирование тканей, как они развиваются и что идет не так в случае заболеваний, таких например, как рак.

Вскоре после расшифровки большей части генокода в 2003 г., ученые обнаружили, что существует гораздо меньше генов, чем они ожидали, но впоследствии убедились в противоположном. Традиционно ген определяли как участок ДНК, который кодирует белок. Однако, расшифровывая генокод, ученые выяснили, что 98,5% участков ДНК не кодируют белки, и назвали эту часть ДНК «бесполезной». И выяснилось, что эти 98,5% участков ДНК имеют едва ли не большее значение: именно эта часть ДНК отвечает за ее функционирование. Например, определенные участки ДНК содержат инструкции для получения похожих на ДНК, но небелковых молекул, так называемых двухцепочечных РНК. Эти молекулы являются частью молекулярно-генетического механизма, контролирующего активность гена (РНК-интерференция). Некоторые двухцепочечные РНК могут подавлять гены, препятствуя синтезу их белковых продуктов. Таким образом, если данные участки ДНК также считать генами, то их количество удвоится. В итоге исследования изменилось само представление о генах, и сейчас ученые считают, что ген - это единица наследственности, которую нельзя понимать как просто участок ДНК, кодирующий белки.

Можно сказать, что химический состав клетки - ее «хард», а информация, закодированная в ДНК, - предварительно загруженный «софт». Никто раньше и не предполагал, что клетка является чем-то большим, чем просто совокупностью составных частей, и что для ее построения недостаточно закодированной в ДНК информации, что столь же важным является процесс саморегулирования генома - и путем сообщения между соседними генами, и путем воздействия других молекул клетки.

Открытый доступ к информации позволит объединить опыт врачей, информацию о патологических случаях, результаты многолетнего изучения отдельных особей, и потому станет возможным соотнести генетическую информацию с данными анатомии, физиологии, поведения человека. И уже это сможет привести к лучшей медицинской диагностике и прогрессу в лечении.

Например, исследователь, изучающий определенную форму рака, сможет сузить круг поиска до одного гена. Сверив свои данные с данными открытой базы генома человека, он сможет проверить, что другие написали об этом гене, включая (потенциально) трехмерную структуру его производного белка, его функции, его эволюционную связь с другими генами человека или с генами мышей, дрожжей или дрозофилы, возможные пагубные мутации, взаимосвязь с другими генами, тканями тела, в которых ген активируется, заболеваниями, связанными с этим геном, или другие данные.

Более того, понимание хода заболевания на уровне молекулярной биологии позволит создать новые терапевтические методы. Учитывая, что ДНК играет огромную роль в молекулярной биологии, а также ее центральное значение в функционировании и принципах работы живых клеток, углубление знаний в этой области откроет путь для новых методов лечения и открытий в различных областях медицины.

Наконец, и «персональная медицина» теперь кажется уже более реальной задачей. Д-р Уиллс выразил надежду, что лечение заболеваний путем замены поврежденного участка ДНК нормальным станет возможным уже в следующее десятилетие. Сейчас проблемой, препятствующей развитию такого метода лечения, является то, что ученые не умеют доставлять ген в клетку. Пока единственный известный способ доставки - заражение животного вирусом с необходимыми генами, но это опасный вариант. Однако д-р Уиллс предполагает, что в скором времени в этом направлении будет совершен прорыв.

Сегодня уже существуют простые способы проведения генетических тестов, которые могут показать предрасположенность к различным заболеваниям, включая рак молочной железы, нарушение свертываемости крови, кистозный фиброз, заболевания печени и др. Такие заболевания, как рак, болезнь Альцгеймера, диабет, как было выяснено, связаны не с общими для всех, а с огромным количеством редких, практически индивидуальных мутаций (причем не в одном гене, а в нескольких; например, мышечную дистрофию Шарко-Мари-Тут может вызвать мутация 39 генов), в результате чего эти болезни трудно поддаются диагностике и воздействию медицинских препаратов. Именно это открытие является одним из камней преткновения «персональной медицины», поскольку, прочитав генокод человека, пока невозможно точно определить состояние его здоровья. Исследуя генокоды разных людей, ученые были разочарованы результатом. Около 2000 участков ДНК человека статистически относилось к «болезненным», которые при этом не всегда относились к работающим генам, т. е. не представляли угрозы. Похоже, что эволюция избавляется от мутаций, вызывающих болезнь, до того, как они станут общими.

Проводя исследования, группа ученых в Сиэтле обнаружила, что из всего человеческого генокода лишь 60 генов претерпевают спонтанную мутацию каждое поколение. При этом мутировавшие гены могут вызвать различные заболевания. Так, если у каждого из родителей было по одному «испорченному» и одному «неиспорченному» гену, то у детей болезнь может и не проявиться или проявится в очень слабой форме, если они получат один «испорченный» и один «неиспорченный» ген, но если ребенок унаследует оба «испорченных» гена, то это может привести к болезни. К тому же, поняв, что общечеловеческие болезни вызываются индивидуальным мутациями, ученые пришли к выводу, что необходимо исследовать полностью весь генокод человека, а не его отдельные участки.

Несмотря на все затруднения, уже созданы первые генетические лекарства против рака, которые блокируют эффекты генетических отклонений, приводящих к росту опухолей. Также недавно было одобрено лекарство компании «Amgen » от остеопороза, которое основывается на том, что болезнь вызывается гиперактивностью определенного гена. Последнее достижение - проведение анализа биологических жидкостей на присутствие мутации определенного гена для диагностики рака толстой кишки. Такой тест позволит избавить людей от неприятной процедуры колоноскопии.

Итак, привычная биология ушла в прошлое, наступил час новой эры науки: постгеномной биологии. Она полностью развенчала идею витализма, и хотя в него уже больше столетия не верил ни один биолог, новая биология не оставила места и для призраков.

Не только интеллектуальные озарения играют важную роль в науке. Такие технические прорывы, как телескоп в астрономии, микроскоп в биологии, спектроскоп в химии, приводят к неожиданным и замечательным открытиям. Похожую революцию в геномике производят сейчас мощные компьютеры и информация, содержащаяся в ДНК.

Закон Мура говорит о том, что компьютеры увеличивают свою мощность вдвое примерно каждые два года. Таким образом, за последнее десятилетие их мощность возросла более чем в 30 раз при постоянно снижающейся цене. В геномике пока нет имени для аналогичного закона, но его следовало бы назвать законом Эрика Лэндера - по имени главы Broad Institute (Cambridge , Massachusetts , крупнейший американский центр, занимающийся расшифровкой ДНК). Он подсчитал, что по сравнению с прошлым десятилетием цена расшифровки ДНК снизилась на сотни тысяч долларов. При расшифровке последовательности геномов в International Human Genome Sequencing Consortium использовали метод, разработанный еще в 1975 г. Ф. Сенджером, что заняло 13 лет и стоило 3 млрд долл. А значит, расшифровка генетического кода была под силу только мощным компаниям или центрам по исследованию генетической последовательности. Сейчас, используя последние устройства для расшифровки от фирмы «Illumina » (San Diego , California ), человеческий геном может быть прочитан за 8 дней, и стоить это будет около 10 тыс. долл. Но и это не предел. Другая калифорнийская фирма, «Pacific Biosciences» и з Менло Парка, разработала способы, позволяющие прочитать геном всего с одной молекулы ДНК. Вполне возможно, что скоро расшифровка генома будет занимать минут 15 и стоить менее 1000 долл. Аналогичные разработки существуют и в «Oxford Nanopore Technologies » (Великобритания). Раньше фирмы использовали решетки проб ДНК (ДНК-чипы) и искали определенные генетические символы - SNP. Сейчас известно несколько десятков таких символов, но есть основания предполагать, что среди трех миллиардов «букв» генетического кода их гораздо больше.

До недавнего времени полностью было расшифровано всего несколько генокодов (в проекте «Геном человека» были использованы кусочки генокода множества людей, а затем собраны в единое целое). Среди них генокоды К. Вентера, Дж. Уотсона, д-ра Ст. Куэйка, двух корейцев, китайца, африканца, а также больного лейкемией, национальность которого ныне уже трудно установить. Теперь, с постепенным усовершенствованием техники чтения последовательностей генов, станет возможным расшифровка генокода все большего и большего числа людей. В будущем свой генокод сможет прочитать любой человек.

Кроме стоимости расшифровки, важным показателем является его точность. Считается, что приемлемым уровнем является не более одной ошибки в 10 000–100 000 символов. Сейчас уровень точности находится на уровне 1 ошибки в 20 000 символов.

На настоящий момент в США ведутся споры по поводу патентования «расшифрованных» генов. Однако многие исследователи считают, что патентование генов станет препятствием для развития науки. Главная стратегическая задача будущего сформулирована следующим образом: изучить однонуклеотидные вариации ДНК в разных органах и клетках отдельных индивидуумов и выявить различия между индивидуумами. Анализ таких вариаций даст возможность не только подойти к созданию индивидуальных генных «портретов» людей, что, в частности, позволит лучше лечить болезни, но и определить различия между популяциями, выявлять географические районы повышенного «генетического» риска, что поможет давать четкие рекомендации о необходимости очистки территорий от загрязнения и выявлять производства, на которых есть большая опасность поражения геномов персонала.

SNP - одиночный генетический символ, который меняется от человека к человеку. Его открыли специалисты «International HapMap Project », изучая такую мутацию генокода, как однонуклеотидный полиморфизм. Целью проекта по картированию участков ДНК, различных для разных этнических групп, был поиск уязвимости этих групп к отдельным заболеваниям и возможностей их преодоления. Эти исследования могут также подсказать, как человеческие популяции адаптировались к различным заболеваниям.

Практических результатов по увеличению максимальной продолжительности жизни человека следует ожидать от полной расшифровки генома человека.

Уже известный нам американский ученый Джеймс Уотсон в 1988 г. инициировал создание международного проекта «Геном человека».

Цель проекта - выяснить последовательности азотистых оснований и положения генов (картирование) в каждой молекуле ДНК каждой клетки человека, что открыло бы причины наследственных заболеваний и пути к их лечению.

Проект состоял из пяти основных этапов:

Составление карты, на которой помечены гены, отстоящие друг от друга не более чем на 2 млн оснований, на языке специалистов – с разрешением 2 Мб (мегабаза - от англ. слова «base» - основание);
завершение физических карт каждой хромосомы с разрешением 0,1 Мб;
получение карты всего генома в виде набора описанных по отдельности клонов (0,005 Мб);
полное секвенирование ДНК (разрешение 1 основание);
нанесение на карту с разрешением в 1 Мб основание всех генов человека.

Следует отметить, что это один из самых дорогих научных проектов в истории изучения генетики. В проекте заняты тысячи специалистов из разных стран мира – биологи, химики, математики, физики и технические специалисты.

На реализацию проекта было потрачено в 1990 г. 60 млн долл., в 1991 г. - 135 млн, в 1992–1995 гг. - от 165 до 187 млн в год.

Самый значительный вклад в финансирование этого проекта внесли США, Великобритания, Германия, Франция и Япония. Только США израсходовали в 1996–1998 гг. соответственно 200, 225 и 253 млн долл.

Ученые разных стран вели исследования, финансируемые из государственных бюджетов, и объединяли их результаты в едином банке данных.

Лидеры стран «большой восьмерки» на саммите на острове Окинава в июле 2000 г. официально объявили о том, что расшифрован геном человека.

По мнению специалистов, 85% информации абсолютно достоверны, т.е. последовательность ДНК в этом объеме перепроверена не один раз, и разночтения больше не выявляются.

Среди наиболее значимых результатов расшифровки генома человека следует выделить следующие:

Определено примерное число генов человека, их оказалось 23 000, а не 80 000, как предполагалось ранее;
генетические инструкции по формированию личности занимают меньше двух с половиной сантиметров на двухметровой ленте ДНК, заключенной практически внутри каждой клетки тела. Что удивляет самих ученых – насколько малая часть человеческого генома напрямую участвует в построении организма;
количество генов, несущих эти инструкции, – всего в пять раз больше, чем нужно для взращивания мухи;
из 3 млрд генетических букв, составляющих человеческие гены, которые образуют ДНК, 99,9% одни и те же. Всего одна десятая процента и есть наша индивидуальность, что делает нас теми, кто мы есть – красивыми и не очень, здоровыми или больными, умными или глупыми, добрыми или, наоборот, жестокими;
женская яйцеклетка является и главным источником эволюционных новаций;
основную ответственность за генетические ошибки несет мужская сперма, в которой содержится вдвое больше мутаций, чем в женской яйцеклетке.

Кроме того, реализация международного проекта «Геном человека» дала толчок развитию передовых технологий в самых разных отраслях, привела к появлению новых подходов в изучении вирусологии, иммунологии, фармакологии и медицине.

Появилась новая отрасль - фармокогенетика.

Достижения генетиков могут с успехом применяться в криминалистике и судебной медицине для идентификации личности. Разработан метод «генетической дактилоскопии».

По последовательностям ДНК можно устанавливать степень родства людей, а по митохондриальной ДНК – точно устанавливать родство по материнской линии.

Параллельно с расшифровкой генома человека на базе тех же современных методов были полностью прочитаны геномы таких классических генетических объектов изучения, как муха дрозофила и круглый червь нематода.

Тем самым положено начало созданию единого геномного информационного поля, что чрезвычайно важно как для изучения функции тех или иных генов, так и для понимания механизма эволюции.

Оказалось, что человек незначительно отличается по сложности от червя, имеющего в своем геноме 20 тыс. генов. Гены, выполняющие сходные функции и у дрозофилы, и у червя, и у человека, имеют много общего.

Техника расшифровки структуры генома позволила прочитать генетические коды более 30 патогенных микроорганизмов, в том числе возбудителей чумы, холеры, других вирусов. Найден ген, мутация которого может защитить человека от заражения вирусом иммунодефицита.

Однако следует подчеркнуть, что исследования по определению последовательности нуклеотидов в ДНК, которые были объявлены как завершенные, это еще не расшифровка генома.

Пройден принципиально важный, но только начальный технологический этап расшифровки генома. Расшифровать - значит понять смысл написанного.

Однако пока существует написанный длинный-длинный текст размером около 3 млрд букв. Но ученые до конца не понимают эту «клинопись». О некоторых участках ДНК уже имеется определенная информация, о других ничего не известно.

Изучена структура в лучшем случае 6–8 тыс. генов, но это только часть генома. О существовании 90% генов и кодируемых ими белковых молекул, регулирующих работу человеческого организма, ученые до сих пор даже не подозревали.

Имея структурную карту ДНК, можно перейти к основному этапу работы – изучению неизвестных участков ДНК, распознаванию неизвестных генов и их функций в организме. Следует выяснить, какие биологически активные и важные для нормального метаболизма вещества они кодируют.

Если болезнь окажется наследственной, зная механизм патологии, то есть к чему приводит та или иная мутация, можно будет найти подходы к лечению.

Если мутация приводит к нехватке какого-либо белка, этот белок восполняется через питание или инъекции. Кроме того белок активируют или инактивируют с помощью лекарственных средств или методов генной терапии. В Америке эта программа уже реализуется по всем известным мутациям в известных генах.

В России в настоящее время диагностируется примерно 30 наследственных заболеваний. Однако важно не только определить функцию того или иного гена, но и понять, как он ведет себя на протяжении всей жизни.

Мало знать, что функция гена гемоглобина – переносить кислород, надо знать, почему способность белка связывать кислород с возрастом слабеет и что происходит в гене. Все это тоже предстоит тщательно изучить.

По мнению специалистов, окончательная расшифровка генома человека может занять не менее 100 лет. Что можно ждать от геномных исследований в ближайшие 40 лет?

Приведем прогноз Фрэнсиса Коллинза, руководителя программы «Геном человека» (США).

Генетическое тестирование, профилактические меры, снижающие риск заболеваний. Генная терапия применяется при лечении до 25 наследственных заболеваний.

Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика.

В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем.
2020 г.

На рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации.

Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей.

Фармакогеномика становится общепринятым подходом для создания многих лекарств.

Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.

Демонстрация безопасности генотерапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.

Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой примерно 1000 долл.

Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека.

Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях.

Основные сферы здравоохранения и методы лечения основаны на геномике.
Предрасположенность к большинству заболеваний определяется ещё до рождения.

Доступна эффективная профилактическая медицина с учетом особенностей индивида.
Болезни определяются на ранних стадиях путем молекулярного мониторинга.

Для многих заболеваний доступна генная терапия, направленная на исправление «больных генов» или замену «испорченных» генов на «здоровые».

Средняя продолжительность жизни достигнет 90 лет.

В 2007 г. был запущен очередной международный проект, получивший название «Энциклопедия ДНК» (Encode). За пять лет ученым удалось проанализировать все 3 млрд пар генетического кода, составляющих человеческую ДНК.

Анализом ДНК занимались более 400 специалистов из 32 научных лабораторий в Великобритании, США, Сингапуре, Испании и Японии.

Международная группа генетиков обнаружила, что огромная часть генетического кода человека, которая ранее считалась нефункциональной, является активной.

Это выяснилось после того, как специалисты получили самую точную в истории карту человеческого генома, расшифровав почти 100% цепочки ДНК.

До сих пор основное внимание ученых было сосредоточено на генах, кодирующих белок. Они составляли всего 2% генома. В то же время совершенно упускалась из виду остальная масса, составляющая ДНК, так как ранее считалось, что она неактивна, и специалисты даже называли ее «мусорным геномом».

Ученые выяснили, что смысловую нагрузку несет всего около 1% генома. Все остальные участки ДНК дают инструкции, позволяющие этому 1% реализоваться. Сами они не несут информации, но указывают, в какой момент тот или иной ген должен заработать. То есть являются своеобразными переключателями.

Образно говоря, это все равно что книга с сюжетом, описанным на четырех страницах, где нет ни обозначения главных героев, ни места действия, ни последовательности событий.

Результаты данного фундаментального исследования имеют огромное значение для общей биологии, поскольку проливают свет на механизмы реализации генетической информации на уровне всего генома.

Расшифровка генома позволит создавать действенные ДНК-препараты., что в конечном итоге, приведет к новым эффективным методам лечения многих заболеваний.

Очевидно, что у достижений генетиков есть много сторонников и противников. В частности консерватизм и неприятие новаций связаны прежде всего с боязнью непредсказуемости результатов.

Кроме того, существует серьезная психологическая проблема. Открытия генетиков в какой-то степени влияют на мировоззрение человека.

Появляется реальная возможность заглянуть внутрь человека и что-то там исправить. Люди начинают чувствовать себя беспомощными участниками эксперимента. Многие боятся неожиданного, ошеломляющего результата, боятся узнать о себе такое, что может изменить само представление о человеке и его месте в современном мире.

Таким образом, чтобы устранить все препоны к долгой жизни необходимо в ближайшем будущем с помощью генома человека решить следующие проблемы:

Каталогизировать гены, участвующие в процессе старения;
исключить хромосомные мутации и мутации в митохондриях;
научиться полноценному восполнению потери клеток;
решить проблему утилизации внутри- и внеклеточного мусора;
избавиться от внеклеточных перекрестных связей.

Решить указанные проблемы поможет использование потенциальных возможностей стволовых клеток и развитие нанотехнологий.

Следует обратить внимание на то, что важной особенностью нашей генетической памяти является то, что в ней хранится «архив» всей нашей жизни.

По всей видимости, есть информация о том какими вы были в детстве и как выглядели в юности, какими стали в зрелости, как выглядим и каково наше здоровье теперь.

Вероятно, клетки «помнят» все физические копии вашего организма, начиная с рождения и до сегодняшнего дня.

Осталось дело за малым – научиться находить эти копии и возвращаться к ним, запуская соответствующие программы.

Геном человека - международная программа, конечной целью которой является определение нуклеотидной последовательности (секвенирование ) всей геномной ДНК человека, а также идентификация генов и их локализация в геноме (картирование ).

Исходная идея проекта зародилась в 1984 среди группы физиков, работавших в Министерстве энергетики США и желавших заняться другой задачей после завершения работ в рамках ядерных проектов. В 1988 Объединенный комитет, куда входили Министерство энергетики США и Национальные институты здоровья, представили обширный проект, в задачи которого – помимо секвенирования генома человека – входило всестороннее изучение генетики бактерий, дрожжей, нематоды, плодовой мушки и мыши (эти организмы широко использовались в качестве модельных систем в изучении генетики человека). Кроме того, предусматривался детальный анализ этических и социальных проблем, возникающих в связи с работой над проектом. Комитету удалось убедить Конгресс выделить на проект 3 млрд. долларов (один нуклеотид ДНК – за один доллар), в чем немалую роль сыграл ставший во главе проекта Нобелевский лауреат Дж. Уотсон . Вскоре к проекту присоединились другие страны (Англия, Франция, Япония и др.). В России в 1988 с идеей секвенирования генома человека выступил академик А.А.Баев , и в 1989 в нашей стране был организован научный совет по программе «Геном человека».

В 1990 была создана Международная организация по изучению генома человека (HUGO ), вице-президентом которой в течение нескольких лет был академик А.Д.Мирзабеков . С самого начала работ по геномному проекту ученые договорились об открытости и доступности всей получаемой информации для его участников независимо от их вклада и государственной принадлежности. Все 23 хромосомы человека были поделены между странами-участницами. Российские ученые должны были исследовать структуру 3-й и 19-й хромосом. Вскоре финансирование этих работ в нашей стране было урезано, и реального участия в секвенировании Россия не принимала. Программа геномных исследований в нашей стране была полностью перестроена и сконцентрирована на новой области – биоинформатике, которая пытается с помощью математических методов понять и осмыслить все, что уже расшифровано. Закончить работу предполагалось через 15 лет, т.е. примерно к 2005. Однако скорость секвенирования с каждым годом возрастала, и если в первые годы она составляла несколько миллионов нуклеотидных пар за год по всему миру, то на исходе 1999 частная американская фирма «Celera» , возглавляемая Дж.Вентером (J.Venter) , расшифровывала не менее 10 млн. нуклеотидных пар в сутки. Этого удалось достичь благодаря тому, что секвенирование осуществляли 250 роботизированных установок; они работали круглосуточно, функционировали в автоматическом режиме и сразу же передавали всю информацию непосредственно в банки данных, где она систематизировалась, аннотировалась и становилась доступной ученым всего мира. Кроме того, фирма «Celera» широко использовала данные, полученные в рамках Проекта другими его участниками, а также разного рода предварительные данные. 6 апреля 2000 состоялось заседание Комитета по науке Конгресса США, на котором Вентер заявил, что его компания завершила расшифровку нуклеотидной последовательности всех существенных фрагментов генома человека и что предварительная работа по составлению нуклеотидной последовательности всех генов (предполагалось, что их 80 тыс. и что они содержат примерно 3 млрд. нуклеотидов), наконец, завершена.

Доклад был сделан в присутствии представителя HUGO, крупнейшего специалиста по секвенированию д-ра Р.Уотерсона. Расшифрованный фирмой «Celera» геном принадлежал анонимному мужчине, т.е. содержал как X-, так и Y-хромосомы, а HUGO использовали в своих исследованиях материал, полученный от разных людей. Между Вентером и HUGO велись переговоры о совместной публикации результатов, однако они закончились безрезультатно из-за разногласий по поводу того, что считать завершением расшифровки генома. По мнению компании «Celera», об этом можно говорить лишь в том случае, если гены полностью секвенированы и известно, как расшифрованные сегменты располагаются в молекуле ДНК. Этому требованию удовлетворяли результаты «Celera», в то время как результаты HUGO не позволяли однозначно определить взаимное положение расшифрованных участков. В результате в феврале 2001 в специальных выпусках двух авторитетнейших научных журналов, «Science» и «Nature» , были раздельно опубликованы результаты исследований «Celera» и HUGO и приведены полные нуклеотидные последовательности генома человека, охватывающие около 90% его длины.

Исследования генома человека «потянули» за собой секвенирование геномов огромного числа других организмов, гораздо более простых; без геномного проекта эти данные были бы получены гораздо позже и в гораздо меньшем объеме. Их расшифровка ведется все возрастающими темпами. Первым крупным успехом стало полное картирование в 1995генома бактерии Haemophilus influenzae , позже были полностью расшифрованы геномы более 20 бактерий, среди которых – возбудители туберкулеза, сыпного тифа, сифилиса и др. В 1996 картировали геном первой эукариотической клетки (клетки, содержащей оформленное ядро) – дрожжевой , а в 1998 впервые секвенировали геном многоклеточного организма – круглого червя Caenorhabolits elegans (нематоды ). Завершена расшифровка генома первого насекомого – плодовой мушки дрозофилы и первого растения – арабидопсиса . У человека уже установлено строение двух самых маленьких хромосом – 21-й и 22-й. Все это создало основы для создания нового направления в биологии – сравнительной геномики .

Знание геномов бактерий, дрожжей и нематоды дает биологам-эволюционистам уникальную возможность сравнения не отдельных генов или их ансамблей, а целиком геномов. Эти гигантские объемы информации только начинают осмысливаться, и нет сомнения, что нас ждет появление новых концепций в биологической эволюции. Так, многие «личные» гены нематоды, в отличие от генов дрожжей, скорее всего, связаны с межклеточными взаимодействиями, характерными именно для многоклеточных организмов. У человека генов только в 4–5 раз больше, чем у нематоды, следовательно, часть его генов должна иметь «родственников» среди известных теперь генов дрожжей и червя, что облегчает поиск новых генов человека. Функции неизвестных генов нематоды изучать гораздо проще, чем у аналогичных генов человека: в них легко вносить изменения (мутации) или выводить их из строя, одновременно прослеживая изменения свойств организма. Выявив биологическую роль генных продуктов у червя, можно экстраполировать эти данные на человека. Другой подход – подавление активности генов с помощью особых ингибиторов и отслеживание изменений в поведении организма.

Весьма интересным представляется вопрос о соотношении кодирующих и некодирующих областей в геноме. Как показывает компьютерный анализ, у C.elegans примерно равные доли – 27 и 26% соответственно – занимают в геноме экзоны (участки гена, в которых записана информация о структуре белка или РНК) и интроны (участки гена, не несущие подобной информации и вырезаемые при образовании зрелой РНК). Остальные 47% генома приходится на повторы, межгенные участки и т.д., т.е. на ДНК с неизвестными функциями. Сравнив эти данные с дрожжевым геномом и геномом человека, мы увидим, что доля кодирующих участков в расчете на геном в ходе эволюции резко уменьшается: у дрожжей она очень высока, у человека очень мала. Налицо парадокс: эволюция эукариот от низших форм к высшим сопряжена с «разбавлением» генома – на единицу длины ДНК приходится все меньше информации о структуре белков и РНК и все больше информации «ни о чем», на самом деле просто непонятой и непрочитанной нами. Много лет назад Ф.Крик , один из авторов «двойной спирали» – модели ДНК, – назвал эту ДНК «эгоистической», или «мусорной». Возможно, какая-то часть ДНК человека действительно относится к такому типу, однако теперь ясно, что основная доля «эгоистической» ДНК сохраняется в ходе эволюции и даже увеличивается, т.е. почему-то дает ее обладателю эволюционные преимущества.

Еще один важный результат, имеющий общебиологическое (и практическое) значение – вариабельность генома . Вообще говоря, геном человека высококонсервативен. Мутации в нем могут либо повредить его, и тогда они приводят к тому или иному дефекту или гибели организма, либо оказаться нейтральными. Последние не подвергаются отбору, поскольку не имеют фенотипического проявления. Однако они могут распространяться в популяции, и если их доля превышает 1%, то говорят о полиморфизме (многообразии) генома. В геноме человека очень много участков, различающихся всего одним-двумя нуклеотидами, но передающихся из поколения в поколение. С одной стороны, этот феномен мешает исследователю, поскольку ему приходится разбираться, имеет ли место истинный полиморфизм или это просто ошибка секвенирования, а с другой – создает уникальную возможность для молекулярной идентификации отдельного организма. С теоретической точки зрения вариабельность генома создает основу генетики популяций, которая ранее основывалась на чисто генетических и статистических данных.

Самые большие надежды и ученые, и общество возлагают на возможность применения результатов секвенирования генома человека для лечения генетических заболеваний . К настоящему времени в мире идентифицировано множество генов, ответственных за многие болезни человека, в том числе и такие серьезные, как болезнь Альцгеймера, муковисцидоз, мышечная дистрофия Дюшенна, хорея Гентингтона, наследственный рак молочной железы и яичников. Структуры этих генов полностью расшифрованы, а сами они клонированы. Еще в 1999 была установлена структура 22-й хромосомы и определены функции половины ее генов. С дефектами в них связано 27 различных заболеваний, в том числе шизофрения, миелолейкоз и трисомия 22 – вторая по распространенности причина спонтанных абортов. Самым эффективным способом лечения таких больных была бы замена дефектного гена здоровым. Для этого, во-первых, необходимо знать точную локализацию гена в геноме, а во-вторых – чтобы ген попал во все клетки организма (или хотя бы в большинство), а это при современных технологиях невозможно. Кроме того, даже попавший в клетку нужный ген мгновенно распознается ею как чужой, и она пытается избавиться от него. Таким образом, «вылечить» удается только часть клеток и только на время. Еще одно серьезное препятствие на пути применения генной терапии – мультигенная природа многих заболеваний, т.е. их обусловленность более чем одним геном. Итак, массового применения генной терапии в ближайшем будущем вряд ли стоит ожидать, хотя успешные примеры такого рода уже есть: удалось добиться существенного облегчения состояния ребенка, страдающего тяжелым врожденным иммунодефицитом, путем введения ему нормальных копий поврежденного гена. Исследования в этой области ведутся по всему миру, и, может быть, успехи будут достигнуты раньше, чем предполагается, как это и произошло с секвенированием генома человека.

Еще одно важное применение результатов секвенирования – идентификация новых генов и выявление среди них тех, которые обусловливают предрасположенность к тем или иным заболеваниям . Так, есть данные о генетической предрасположенности к алкоголизму и наркомании, открыто уже семь генов, дефекты в которых приводят к токсикомании. Это позволит проводить раннюю (и даже пренатальную) диагностику заболеваний, предрасположенность к которым уже установлена.

Широкое применение несомненно найдет и еще один феномен: обнаружилось, что разные аллели одного гена могут обусловливать разные реакции людей на лекарственные препараты. Фармацевтические компании планируют использовать эти данные для производства лекарств, предназначенных разным группам пациентов. Это поможет избежать побочных эффектов терапии, снизить миллионные затраты. Возникает целая новая отрасль – фармакогенетика , которая изучает, как те или иные особенности строения ДНК могут повлиять на эффективность лечения. Появятся совершенно новые подходы к созданию лекарственных средств, основанные на открытии новых генов и изучении их белковых продуктов. Это позволит перейти от неэффективного метода «проб и ошибок» к целенаправленному синтезу лекарственных веществ.

Важный практический аспект вариабельности генома – возможность идентификации личности . Чувствительность методов «геномной дактилоскопии» такова, что достаточно одной капли крови или слюны, одного волоса, чтобы с абсолютной достоверностью (99,9%) установить родственные связи между людьми. После секвенирования генома человека этот метод, использующий теперь не только специфические маркеры в ДНК, но и однонуклеотидный полиморфизм, станет еще более надежным. Вариабельность генома породила направление геномики – этногеномику . Этнические группы, населяющие Землю, имеют некоторые групповые генетические признаки, характерные для данного этноса. Получаемая информация в ряде случаев может подтвердить или опровергнуть те или иные гипотезы, циркулирующие в рамках таких дисциплин, как этнография, история, археология, лингвистика. Еще одно интересное направление – палеогеномика , занимающаяся исследованием древней ДНК, извлеченной из останков, найденных в могильниках и курганах.

Финансирование «геномной гонки» и участие в ней тысяч специалистов основывались прежде всего на постулате, что расшифровка нуклеотидной последовательности ДНК сможет решить фундаментальные проблемы генетики. Оказалось, однако, что лишь 3% генома человека кодируют белки и участвуют в регуляции действия генов в ходе развития. Каковы функции остальных участков ДНК и есть ли они вообще – остается совершенно неясным. Около 10% генома человека составляют так называемые Alu-элементы длиной 300 п.н. Они появились неизвестно откуда в ходе эволюции у приматов, и только у них. Попав к человеку, они размножались до полумиллиона копий и распределились по хромосомам самым причудливым образом, то образуя сгустки, то прерывая гены.

Другая проблема касается самих кодирующих участков ДНК. При чисто молекулярно-компьютерном анализе возведение этих участков в ранг генов требует соблюдения сугубо формальных критериев: есть в них знаки пунктуации, необходимые для прочитывания информации, или нет, т.е. синтезируется ли на них конкретный генный продукт и что он собой представляет. В то же время роль, время и место действия большинства потенциальных генов пока неясны. По мнению Вентера, для определения функций всех генов может потребоваться не меньше ста лет.

Далее необходимо договориться, что вкладывать в само понятие «геном». Часто под геномом понимается лишь генетический материал как таковой, однако с позиции генетики и цитологии его составляет не только структура элементов ДНК, но и характер связей между ними, который определяет, как гены будут работать и как пойдет индивидуальное развитие при определенных условиях среды. И, наконец, нельзя не упомянуть о феномене так называемой «неканонической наследственности» , привлекшем к себе внимание в связи с эпидемией «коровьего бешенства». Эта болезнь стала распространяться в Великобритании в 1980-х годах после того, как в корм коровам стали добавлять переработанные головы овец, среди которых встречались овцы, больные скрэпи (нейродегенеративное заболевание). Сходная болезнь стала передаваться людям, употреблявшим в пищу мясо больных коров. Обнаружилось, что инфекционным агентом являются не ДНК или РНК, а белки-прионы. Проникая в клетку-хозяина, они изменяют конформацию нормальных белков-аналогов. Феномен прионов обнаружен также у дрожжей.

Таким образом, попытка представить расшифровку генома как чисто научно-техническую задачу несостоятельна. А между тем такой взгляд широко пропагандируется даже весьма авторитетными учеными. Так, в книге «Код кодов» (The Code of Codes, 1993) У.Гилберт , открывший один из методов секвенирования ДНК, рассуждает о том, что определение нуклеотидной последовательности всей ДНК человека приведет к изменениям в наших представлениях о самих себе. «Три миллиарда пар оснований могут быть записаны на одном компакт-диске. И любой может вытащить из кармана свой диск и сказать: «Вот он – Я!» Между тем необходимо знать не только порядок следования звеньев в цепи ДНК и не только взаимное расположение генов и их функции. Важно выяснить характер связей между ними, который определяет, как гены будут работать в конкретных условиях – внутренних и внешних. Ведь многие болезни человека обусловливаются не дефектами в самих генах, а нарушениями их согласованных действий, системы их регуляции.

Расшифровка генома человека и других организмов не только привела к прогрессу во многих областях биологии, но и породило множество проблем. Одна из них – идея «генетического паспорта», в котором будет указано, несет ли данный человек опасную для здоровья мутацию. Предполагается, что эти сведения будут конфиденциальными, но никто не может гарантировать, что не произойдет утечки информации. Прецедент уже был в случае «генетической паспортизации» афроамериканцев с той целью, чтобы определить, являются ли они носителями гена гемоглобина, содержащего мутацию, которая связана с серповидноклеточной анемией. Эта мутация распространена в Африке в малярийных районах, и если она присутствует в одном аллеле, то обеспечивает носителю устойчивость к малярии, обладатели же двух копий (гомозиготы) умирают в раннем детстве. В 1972 в рамках борьбы с малярией на «паспортизацию» было истрачено более 100 млн. долл., а после выполнения программы выяснилось, что а) у здоровых людей, носителей мутации, возникает комплекс вины, эти люди чувствуют себя не совсем нормальными, и такими их начинают воспринимать окружающие; б) появились новые формы сегрегации – отказ в приеме на работу. В настоящее время некоторые страховые компании выделяют средства на проведение ДНК-тестов в отношении ряда заболеваний, и если будущие родители, носители нежелательного гена, не соглашаются на прерывание беременности и у них рождается больной ребенок, им могут отказать в социальной поддержке.

Другая опасность – эксперименты по трансгенозу, созданию организмов с пересаженными от других видов генами, и распространению таких «химер» в окружающей среде. Здесь особую опасность представляет необратимость процесса. Если атомную станцию можно закрыть, использование ДДТ и аэрозолей прекратить, то изъять из биологической системы новый организм невозможно. Мобильные гены, открытые МакКлинток у растений, и сходные с ними плазмиды микроорганизмов передаются в природе от вида к виду. Ген, вредный или полезный (с точки зрения человека) для одного вида, может со временем перейти к другому виду и непредсказуемым образом изменить характер своего действия. В Америке мощная биотехнологическая компания «Монсанто» создала сорт картофеля, в клетки которого включен бактериальный ген, кодирующий токсин, который убивает личинок колорадского жука. Утверждается, что этот белок безвреден для человека и животных, однако страны Европы не дали разрешения на выращивание у себя этого сорта. Картофель испытывается в России. Опыты с трансгенными растениями предусматривают строжайшую изоляцию делянок с подопытными растениями, однако на охраняемых полях с трансгенными растениями Института фитопатологии в Голицыне под Москвой ремонтные рабочие выкопали картошку и тут же ее съели. На юге Франции ген устойчивости к насекомым «перескочил» от культурных растений к сорнякам. Другой пример опасного трансгеноза – выпуск в озера Шотландии лосося, который набирает вес в 10 раз быстрее, чем обычный лосось. Существует опасность, что этот лосось попадет в океан и нарушит сложившееся популяционное равновесие у других видов рыб.

Вот как сформулировал прогноз Ф.Коллинз, руководитель программы "Геном человека" (США).

2010 год

Генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсестры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, яростно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Не всем доступны практические приложения геномики, особенно в развивающихся странах.

2020 год

На рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Терапия рака, прицельно направленная на свойства раковых клеток. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Демонстрация безопасности генотерапии на уровне зародышевых клеток при помощи технологии гомологичной рекомбинации.

2030 год

Определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее 1000 $. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека.

Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.

2040 год

Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (при/до рождения).

Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни детектируются на ранних стадиях путем молекулярного мониторинга.

Для большинства заболеваний доступна генная терапия.

Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря социоэкономическим мерам. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.

Как всякое научное открытие, расшифровка генома человека привела к появлению новых важных научных направлений, бурным развитием которых ознаменовалось начало 21 века – функциональная геномика (functional genomics), генетическое разнообразие (human genome diversity), этические, правовые и социальные аспекты исследований генома человека (ethical’legal and social implications - ELSI).

Задачей функциональной геномики является изучение функций новых генов, точнее генных ансамблей, так называемых «генных сетей» в нормальном развитии органов, тканей и при различных заболеваниях. Исследование генетического разнообразия проливает свет на эволюцию человека, проблемы этногенеза, т.е. происхождение рас, национальностей, этнических групп и пр. Они особенно важны и для выяснения наследственной предрасположенности человека к различным, в том числе и наиболее частым заболеваниям. Огромное значение на современном этапе приобретают исследования путей адаптации человека к серьезным переменам в медицине и обществе, вызванными быстро нарастающей «генетизацией» человечества.

Одним из важнейших итогов изучения генома человека является возникновение и быстрое развитие нового направления медицинской науки – молекулярной медицины - медицины, основанной на диагностике, лечении и профилактике наследственных и ненаследственных болезней с помощью самих генов, точнее нуклеиновых кислот. Что же отличает молекулярную медицину от обычной медицины? Прежде всего, универсальность диагностики основанная на точных методах анализа самих генов. Ее профилактическая направленность, то есть возможность диагностировать или с высокой вероятностью предсказывать то или иное заболевание (предиктивная медицина). Четко выраженная индивидуальность лечения (лекарства должны подбираться каждому больному строго индивидуально). Наконец, использования для лечения разных наследственных и ненаследственных болезней самих генов и их продуктов (генная терапия). Что же такое предиктивная медицина? Как показывают результаты сравнительного анализа, частота индивидуальной вариабельности молекулярной структуры геномов разных людей составляет около 0,1%. Это означает, что такие различия (замены отдельных букв) встречаются очень часто – примерно через каждые 400 знаков, что предполагает наличие 9 000 000 замен на каждый геном. Важно, что такие варианты не редко встречаются внутри самих генов. Их результатом могут быть замены букв в генетическом коде (полиморфизмы), в результате которых синтезируются белки с необычными, часто сильно измененными свойствами, отличными от нормальных. Наличие таких функционально различных белков (изоферментов), гормонов и пр. создает уникальный биохимический паттерн каждого человека.

Подобные замены в генах (полиморфизмы) далеко не всегда нейтральны. Они, а точнее продукты таких генов, как правило, работают менее эффективно и делают человека уязвимым к тому или иному заболеванию. Особенно ярко эту мысль выразил Фрэнсис Коллинз - директор Международной Программы "Геном Человека": «Никто из нас не совершенен. Все больше генетических тестов становится доступно и каждый из нас, в конечном счете, обнаруживает у себя мутацию, предрасполагающую к какой-нибудь болезни». Действительно, именно при помощи генетических тестов у человека любого возраста, а при необходимости даже внутриутробно, можно установить предрасположенность к тому или иному заболеванию. При этом, естественно, тестированию подвергаются не все, а только определенные гены (гены «предрасположенности», то есть гены, полиморфизмы (мутации) которых совместимы с жизнью, но при определенных неблагоприятных воздействиях внешних факторов (лекарства, диета, загрязнения воды, воздуха и пр.) или продуктов других генов могут быть причиной различных, так называемые мультифакториальных заболеваний. Существенно подчеркнуть, что причиной большинства заболеваний являются мутации не отдельных, а многих разных генов (т.н. генных сетей), обеспечивающих соответствующие метаболические процессы. В последнее время именно расшифровка составляющих элементов таких генных сетей при различных заболеваниях, выяснение роли полиморфизмов отдельных генов в их возникновении составляет горячую область предиктивной медицины.

Важным разделом предиктивной медицины является фармакогенетика - выяснение генетически обусловленных особенностей индивидуальной реакции организма на различные фармпрепараты. По некоторым данным ежегодно в мире погибает более 100 000 человека в связи с неправильной дозировкой лекарственных веществ, игнорирующей индивидуальную вариабельность действия лекарств. В настоящее время разработаны и широко используются в различных лабораториях и диагностических центрах, многочисленные генетические тесты. Часть из них направлена на выявление носителей мутантных генов, приводящих к различным тяжелым наследственным заболеваниям. Эти тесты особенно актуальны в семьях высокого риска, где уже есть больной ребенок. Они позволяют выяснить в семье носителей соответствующих мутантных генов и предотвратить рождение заведомо больного ребенка после своевременной дородовой (пренатальной) диагностики. Существует, однако, большая группа нейродегенеративных и некоторых онкологических заболеваний, первые клинические проявления которых наблюдаются сравнительно поздно, уже у взрослых. Для таких болезней разработаны методы досимптоматической диагностики.

В настоящее время, как показывает анализ мировой литературы, уже доступны для клинического применения около 150-200 генетических тестов Их широко применяют в различных центрах США и стран Западной Европы, особенно во Франции, Великобритании и в Германии. Во Франции, например, разработана и уже используется в медицинской практике система SESAM (System Expert Specialisee aux Analyae Medicale). Она основана на компьютерной интерпретации результатов генетического тестирования, а так же результаты биохимических, серологических и иммунологических анализов. В ходе ее выполнения уже используют свыше 80 тестов, которые обрабатывают при помощи специальной компьютерной программы. Особенно существенный вклад вносит данная программа в Предиктивную Медицину. Основной упор при этом делается на интерпретацию результатов различных генетических тестов, и, в первую очередь, тестов по изучению состояния генов системы детоксикации, ответственных за чувствительность человека к самым различным внешним воздействиям, особенно к химическим препаратам, лекарствам и другим ксенобиотикам. В Великобритании уже началось осуществление масштабного проекта по созданию Биобанка , содержащего генетическую информацию более 500 000 британцев разных рас и этнических групп с целью изучения диабета, рака, болезни Альцгеймера, сердечно-сосудистых заболеваний. Предполагается, что данный проект, в случае его успешной реализации, станет началом новой эры в медицине, так как с его помощью станет возможным прогнозировать и лечить заболевания, основываясь на индивидуальных генетических особенностях пациентов.

Программа массовой генетической паспортизации всего населения и, прежде всего, молодежи уже начата в Эстонии. В России такая Программа пока отсутствует. Однако различные предиктивные генетические тесты уже проводятся в разных молекулярных лабораториях и центрах Москвы, Санкт-Петербурга, Новосибирска, Томска и Уфы.

Естественно, что гены системы детоксикации (они же - гены метаболизма) представляют собой лишь одно из многих семейств генов, тестирование которых важно для целей предиктивной медицины. Существенная роль в наследственной предрасположенности принадлежит и другим генам, в частности, генам, контролирующим трансмембранный перенос метаболитов, а так же генам, продукты которых играют ключевую роль в клеточном метаболизме (гены-триггеры).

Таким образом, как ни печально, приходится признать, что человек рождается уже с набором генов, предрасполагающих его к тому или иному тяжелому заболеванию. При чем в каждой семье и у каждого человека выраженность наследственной предрасположенности к конкретной болезни сугубо индивидуальна. Тестирование соответствующих генов позволяет не только выявить лиц с повышенным риском этих и других мультифакториальных заболеваний, но и оптимизировать стратегию их лечения.

Существенно подчеркнуть, что достаточно объективная информация о наследственной предрасположенности к любому мультифакториальному заболеванию, которую мы унаследовали от родителей, может быть получена в результате тестирования не одного или двух, но сразу нескольких различных генов - главных генов предрасположенности в той или иной генной сети. В настоящее время методы тестирования многокомпонентных геннных сетей разработаны для более 25 мультифакториальных заболеваний. Ко всему сказанному добавим: идентификация всех генов человека, открытие новых генных сетей неизмеримо увеличивает возможности генетического тестирования наследственной предрасположенности и медико-генетического консультирования. Существенную помощь в этом могут оказать новые технологии. В частности, методы анализа с помощью микрочипов, которые позволяет одномоментно тестировать тысячи генетических полиморфизмов у одного человека или сразу несколько полиморфизмов у многих тысяч людей. Последний подход особенно важен для суждения о генетической структуре населения целого государства, что важно для планирования наиболее эффективной системы профилактики частых мультифакториальных болезней.

Итак, с помощью генетических тестов можно получить достаточно объективную информацию о том, какие болезни уже "выбрали" нас в момент формирования нашего генома на начальных этапах эмбрионального развития, то есть носителями каких мутантных генов мы являемся. Вполне реально уже сегодня узнать в какой мере уникальные особенности нашего генома могут представлять реальную угрозу для здоровья наших детей и близких родственников, могут привести нас самих к тяжелым, неизлечимым заболеваниям. Совокупность таких сведений о геноме каждого человека и позволяет говорить об индивидуальной базе данных. Внедрение в практическую медицину пренатальной (дородовой) диагностики наследственных болезней, скрининг (массовое обследование) носительства мутантных генов и генетических тестов активно способствуют формированию баз данных для отдельных индивидуумов и целых семей. Дополненная сведениями о кариотипе (наборе хромосом) и генетическим номером (уникальный генетический код каждого человека, устанавливаемый методами геномной дактилоскопии) и является основой расширенной индивидуальной базы данных человека - его "генетическим паспортом"). Проблема, однако, заключается в том, что далеко не каждый человек хочет и готов знать о подводных камнях своей наследственности. Не менее серьезной оказывается и проблема обязательной строгой конфиденциальности такой информации. Естественно, что решение этих и многих других проблем на пути широкого внедрения достижений современной генетики в жизнь требует их детального осмысления учеными и обществом. Назрела необходимость четкой юридической регламентации и гармоничной социальной адаптации применения достижений предиктивной медицины в практике здравоохранения.

Стратегические направления исследований генома человека.

Исследования генома человека уже привели к возникновению таких новых научных направлений, и, соответственно, программ как "Функциональная Геномика"; "Генетическое Разнообразие Человека"; "Этические, Правовые и Социальные Аспекты Исследований Генома Человека". Эти направления активно проникают во все сферы жизни человека, и позволяют уже сейчас говорить о быстро нарастающей "генетизации" человечества.

1. По мере стремительного увеличения числа картированных генов, все более очевидным становится недостаток данных об их функциях и, прежде всего, о функциональной значимости тех белков, которые они кодируют. Из более 30 тысяч генов уже идентифицированных на физической карте генома человека на сегодняшний день изучены в функциональном отношении не более 5-6 тыс. Какова функция остальных 25 тысяч уже картированных и такого же числа еще некартированных генов составляет важную стратегическую задачу исследований в программе "Функциональная Геномика" . Методы направленного мутагенеза эмбриональных стволовых клеток, создание банков кДНК различных тканей и органов на разных стадиях онтогенеза; разработка методов изучения функций участков ДНК, некодирующих белки; развитие новых технологий по сравнительному анализу экспрессии генов - вот уже существующие подходы в решении проблем функциональной геномики.

2. Геномы всех людей, за исключением однояйцовых близнецов, различны. Выраженные популяционные, этнические и, главное, межиндивидуальные различия геномов как в их смысловой части (экзоны структурных генов), так и в их некодирующих последовательностях (межгенные промежутки, интроны, пр.) обусловлены различными мутациями, приводящими к генетическому полиморфизму. Последний является предметом пристального изучения быстро набирающей силы программы "Генетическое Разнообразие Человека" . Решение многих проблем этногенеза, геногеографии, происхождения человека, эволюции генома в филогенезе и этногенезе - вот круг фундаментальных проблем, стоящих перед этим быстро развивающимся направлением. Близко примыкают к нему и исследования по Сравнительной Геномике (Comparative Genomics). Одновременно с человеком проводится секвенирование геномов других млекопитающих (мышь), а также насекомых (дрозофилы), червей (Caenorhabditis elegans). Есть основания предполагать, что компьютеризованный анализ геномов различных животных позволит создать Периодическую Систему Геномов. Будет ли она по аналогии с известной Периодической Системой Химических Элементов Д.И.Менделеева двумерной или окажется многомерной покажет будущее. Однако сама возможность создания такой Биологической Периодической Системы сегодня уже не представляется фантастичной.

3. По мере все более полной "генетизации" жизни человека, т.е. проникновения генетики не только во все разделы медицины, но и далеко за ее пределы, в том числе в социальные сферы, нарастающей заинтересованностью всех слоев мирового сообщества в достижениях генетики, все более очевидным для ученых, чиновников, правительств и просто образованных людей становится необходимость решения многочисленных этических, юридических, правовых и социальных проблем порождаемых успехами в изучении генома человека и познании его функций. Серии Этических, Правовых и Социальных программ, направленных на изучение проблем адаптации человека и общества в целом к восприятию достижений генетики.

Ученые расшифровали последнюю хромосому генома человека. Составлена карта самой сложной хромосомы человека. Хромосома 1 содержит почти в два раза больше генов, чем обычная хромосома, и составляет 8% генетического кода человека. Это самая крупная хромосома стала последней из 23 хромосом человека (22 парных плюс половые), расшифрованной в рамках проекта "Геном человека" (Human Genome), сообщает Reuters.

В данной хромосоме содержится 3141 ген, в том числе те, которые связаны с такими заболеваниями, как рак, болезни Альцгеймера и Паркинсона. "Данное достижение закрывает важный этап проекта "Геном человека", - говорит Саймон Грегори, руководитель проекта, которым занимается британский Институт Сэнгера.

Хромосома 1 является самой крупной и содержит наибольшее число генов. "Поэтому с этим участком генома связано наибольшее число заболеваний", - говорит Грегори.

На секвенсирование хромосомы 1 понадобилось 10 лет работы 150 британских и американских ученых. Результаты работы помогут исследователям во всем мире развивать методы диагностики и лечение рака, аутизма, психических расстройств и других заболеваний.

Хромосомы находятся в ядре клетки, они представляют нитеобразные структуры и содержат гены, которые определяют индивидуальные характеристики человека. Геном человека, по оценкам, состоит из 20-25 тыс. генов. В ходе секвенсирования хромосомы 1 было обнаружено 1000 новых генов.

Библиография

Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асеев М.В. Геном человека и гены "предрасположенности": Введение в предиктивную медицину. СПб., 2000
Боринская С.А., Янковский Н.К. Структура генома прокариот // Молекулярная биология. 1999. Т. 33. № 6
Бочков Н.П. Генетика человека и клиническая медицина // Вестн. РАМН. 2001. № 10
Генная терапия - медицина будущего / Под ред. А.В.Зеленина. М., 2000
Горбунова В.Н., Баранов В.С Введение в молекулярную диагностику и генотерапию наследственных заболеваний. СПБ., 1997
Пузырев В.П., Степанов В.А. Патологическая анатомия генома человека. Новосибирск, 1997
Тяжелова Т.В., Иванов Д.В., Баранова А.В., Янковский Н.К. Новые гены человека в области 13q14.3, обнаруженные in silico // Генетика. 2003. Т. 39. №6
Янковский Н.К., Боринская С.А. Геном человека: научные и практические достижения и перспективы: Аналитический обзор // Вестник РФФИ. 2003. № 2
Baranova A.V., Lobashev A.V., Ivanov D.V., Krukovskaya L.L., Yankovsky N.K., Kozlov A.P. In silico screening for tumour-specific expressed sequences in human genome // FEBS Lett. 2001. Nov. V. 9. № 508 (1)
Collins F.S., Green E.D., Guttmacher A.E., Guyer M.S. A vision for the future of genomics research. 2003. Nature. № 422
Mitochondrial DNA sequence diversity in Russians. Orekhov V., Poltoraus A., Zhivotovsky L.A., Spitsyn V., Ivanov P., Yankovsky N. // FEBS Lett. 1999. Feb. V. 19. № 445 (1)
Orekhov V., Ivanov P., Zhivotovsky L., Poltoraus A., Spitsyn V., Ginter E., Khusnutdinova E., Yankovsky N. MtDNA sequence diversity in three neighbouring ethnic groups of three language families from the European part of Russia // Archaeogenetics: DNA and the Population Prehistory of Europe / Ed. by. C. Renfrew, K. Boyle. Cambridge, 2000
The Human Genome // Nature. 2001. № 409
The Human Genome // Nature. 2003. № 421
Venter J.C., Adams M.D., Myers E.W. et al. The sequence of the human genome // 2001. Science. № 291

Материал взят из архива программы А. Гордона из раздела «Специальные проекты» сайта http://promo.ntv.ru, а также с сайта http://www.newsru.com из статьи «Ученые расшифровали последнюю хромосому генома человека» от 18 мая 2006 г.