Допирателно съотношение. Правила за намиране на тригонометрични функции: синус, косинус, тангенс и котангенс

  1. Един от катетите на правоъгълен триъгълник е 25 см. Изчислете дължината на втория катет, ако ъгълът, прилежащ към известния катет, е 36º.

    Решение:

    Според определението тангенсът на остър ъгъл в правоъгълен триъгълник е равен на съотношението на срещуположния катет към съседния. Катет a=25 cm е съседен на ъгъл α=36º, а неизвестният катет b е срещу него. Тогава:

    $$ tg(\alpha) = \frac(b)(a) $$, следователно $$ b = a \cdot tg(\alpha) $$

    Нека направим замяна:

    $$ b = 25 \cdot tg (36^0) = 25 \cdot 0,727 = 18,175 cm$$

    Отговор:

    $$ b = 18,175 cm$$

  2. Изчислете стойността на израза: $$2 + tg(12^0) - tg^2 \left(\frac(\pi)(5) \right)$$

    Решение:

    Когато замествате, трябва да вземете предвид, че единият от ъглите се измерва в градуси, а другият в радиани:

    $$ 2 + tg(12^0) - tg^2 \left(\frac(\pi)(5) \right) = 2 + 0,213 - 0,727^2 \приблизително 1,684 $$

    Отговор:
  3. За да изчисли височината на Хеопсовата пирамида, ученият изчакал Слънцето, откъдето се намира, да докосне върха й. След това той измерва ъгловата височина на Слънцето над хоризонта, тя се оказва 21º, а разстоянието до пирамидата е 362 м. Каква е нейната височина?

    Решение:

    Височината на пирамидата H и разстоянието до нея L са катети на правоъгълен триъгълник, чиято хипотенуза е слънчев лъч. Тогава тангенсът на ъгъла, под който Слънцето се вижда на върха на пирамидата, е:

    $$ tg \alpha = \frac(H)(L) $$, изчисляваме височината чрез преобразуване на формулата:

    $$ H = L \cdot tg(\alpha) = 362 \cdot tg(21^0) = 138,96 $$

    Отговор:

    $$ H = 138,96 $$

  4. Намерете tg α, ако срещуположният катет е 6 cm, а съседният катет е 5 cm.

    Решение:

    А-приори

    $$ tg \alpha = \frac(b)(a) $$

    $$tg \alpha = \frac(6)(5) = 1,2 $$

    Така че ъгълът $$ \alpha = 50^(\circ) $$ .

    Отговор:

    $$tg \alpha = 1,2 $$

  5. Намерете tg α, ако противоположният катет е 8 cm, а хипотенузата е 10 cm.

    Решение:

    Използвайки формулата на Питагор, намираме съседния крак на триъгълника:

    $$ a = \sqrt((c^2 - b^2)) $$

    $$ a = \sqrt((10^2 - 8^2)) = \sqrt(36) = 6 \ cm $$

    А-приори

    $$tg \ \alpha = \frac(8)(6) = 1,333$$

    Така че ъгълът $$ \alpha = 53^(\circ) $$ .

    Отговор:

    $$ tg \alpha = 1,333 $$

  6. Намерете tg α, ако съседният катет е 2 пъти по-голям от противоположния, а хипотенузата е 5√5 cm.

    Решение:

    Използвайки формулата на Питагор, намираме краката на триъгълника:

    $$ c = \sqrt( (b^2 + 4b^2) ) = \sqrt((5b^2)) = b\sqrt(5) $$

    $$ b = \frac(c)(\sqrt(5)) = \frac( 5\sqrt(5) )(\sqrt(5)) = 5 \ cm $$

    $$ a = 5 \cdot 2 = 10 \ cm $$

    А-приори

    $$ tg \ \alpha = \frac(b)(a) $$

    $$ tg \ \alpha = \frac(5)(10) = 0,5$$

    Така че ъгълът $$ \alpha = 27^(\circ) $$ .

    Отговор:

    $$ tg \alpha = 0,5 $$

  7. Намерете tg α, ако хипотенузата е 12 cm и ъгълът β=30°.

    Решение:

    Намерете крака в съседство с желания ъгъл. Известно е, че кракът, лежащ срещу ъгъл от 30 °, е равен на половината от хипотенузата. означава,

    $$ a = 6 \ cm $$

    По теоремата на Питагор намираме крака срещу желания ъгъл:

    $$ b = \sqrt( (c^2 + a^2) ) $$

    $$ b = \sqrt( (144-36) ) = \sqrt(108) = 6\sqrt(3)$$

    А-приори

    $$ tg \ \alpha = \frac(b)(a) $$

    $$ tg \ \alpha = \frac(6 \sqrt(3))(6) = \sqrt(3) = 1,732 $$

    Така че ъгълът $$ \alpha = 60^(\circ) $$ .

    Отговор:

    $$ tg \alpha = 1,732 $$

  8. Намерете tg α, ако срещуположният и съседният катет са равни и хипотенузата е 6√2 cm.

    Решение:

    А-приори

    $$ tg \ \alpha = \frac(b)(a) $$

    $$tg \\alpha = 1 $$

    Така че ъгълът $$ \alpha = 45^(\circ) $$ .

    Отговор:

    Понятията синус, косинус, тангенс и котангенс са основните категории на тригонометрията – дял от математиката, и са неразривно свързани с определението за ъгъл. Притежаването на тази математическа наука изисква запаметяване и разбиране на формули и теореми, както и развито пространствено мислене. Ето защо тригонометричните изчисления често създават трудности за ученици и студенти. За да ги преодолеете, трябва да се запознаете по-добре с тригонометричните функции и формули.

    Понятия в тригонометрията

    За да разберете основните понятия на тригонометрията, първо трябва да решите какво представляват правоъгълен триъгълник и ъгъл в кръг и защо всички основни тригонометрични изчисления са свързани с тях. Триъгълник, в който един от ъглите е 90 градуса, е правоъгълен триъгълник. В исторически план тази фигура често се използва от хора в областта на архитектурата, навигацията, изкуството, астрономията. Съответно, изучавайки и анализирайки свойствата на тази фигура, хората стигнаха до изчисляването на съответните съотношения на нейните параметри.

    Основните категории, свързани с правоъгълните триъгълници, са хипотенузата и катетите. Хипотенузата е страната на триъгълник, която е срещу правия ъгъл. Краката, съответно, са другите две страни. Сборът от ъглите на всеки триъгълник винаги е 180 градуса.

    Сферичната тригонометрия е раздел от тригонометрията, който не се изучава в училище, но в приложните науки като астрономия и геодезия учените го използват. Характеристика на триъгълника в сферичната тригонометрия е, че той винаги има сума от ъгли, по-големи от 180 градуса.

    Ъгли на триъгълник

    В правоъгълен триъгълник синусът на ъгъл е съотношението на катета срещу желания ъгъл към хипотенузата на триъгълника. Съответно, косинусът е отношението на съседния катет и хипотенузата. И двете стойности винаги имат стойност, по-малка от единица, тъй като хипотенузата винаги е по-дълга от крака.

    Тангенсът на ъгъл е стойност, равна на съотношението на противоположния ъгъл към съседния ъгъл на желания ъгъл или синус към косинус. Котангенсът от своя страна е съотношението на съседния катет на желания ъгъл към противоположния кактет. Котангенсът на ъгъл може да се получи и чрез разделяне на единицата на стойността на тангенса.

    единична окръжност

    Единична окръжност в геометрията е окръжност, чийто радиус е равен на единица. Такава окръжност се построява в декартова координатна система, като центърът на окръжността съвпада с началната точка, а началната позиция на радиус вектора се определя от положителната посока на оста X (абсцисната ос). Всяка точка от окръжността има две координати: XX и YY, тоест координатите на абсцисата и ординатата. Избирайки която и да е точка от окръжността в равнината ХХ и пускайки перпендикуляра от нея към абсцисната ос, получаваме правоъгълен триъгълник, образуван от радиус към избраната точка (нека го обозначим с буквата C), перпендикуляр, начертан към оста X (пресечната точка е означена с буквата G) и сегмент от абсцисната ос между началото (точката е означена с буквата A) и пресечната точка точка G. Полученият триъгълник ACG е правоъгълен триъгълник, вписан в окръжност, където AG е хипотенуза, а AC и GC са катети. Ъгълът между радиуса на окръжността AC и сегмента на абсцисната ос с обозначение AG, определяме като α (алфа). И така, cos α = AG/AC. Като се има предвид, че AC е радиусът на единичната окръжност и е равен на единица, излиза, че cos α=AG. По същия начин sin α=CG.

    Освен това, знаейки тези данни, е възможно да се определи координатата на точка C върху окръжността, тъй като cos α=AG и sin α=CG, което означава, че точка C има дадените координати (cos α; sin α). Знаейки, че тангенсът е равен на съотношението на синуса към косинуса, можем да определим, че tg α \u003d y / x и ctg α \u003d x / y. Като се имат предвид ъглите в отрицателна координатна система, може да се изчисли, че стойностите на синуса и косинуса на някои ъгли могат да бъдат отрицателни.

    Изчисления и основни формули


    Стойности на тригонометрични функции

    След като разгледахме същността на тригонометричните функции през единичната окръжност, можем да извлечем стойностите на тези функции за някои ъгли. Стойностите са посочени в таблицата по-долу.

    Най-простите тригонометрични тъждества

    Уравнения, в които има неизвестна стойност под знака на тригонометричната функция, се наричат ​​тригонометрични. Тъждества със стойност sin x = α, k е всяко цяло число:

    1. sin x = 0, x = πk.
    2. 2. sin x \u003d 1, x \u003d π / 2 + 2πk.
    3. sin x \u003d -1, x \u003d -π / 2 + 2πk.
    4. sin x = a, |a| > 1, няма решения.
    5. sin x = a, |a| ≦ 1, x = (-1)^k * arcsin α + πk.

    Идентичности със стойност cos x = a, където k е всяко цяло число:

    1. cos x = 0, x = π/2 + πk.
    2. cos x = 1, x = 2πk.
    3. cos x \u003d -1, x \u003d π + 2πk.
    4. cos x = a, |a| > 1, няма решения.
    5. cos x = a, |a| ≦ 1, х = ±arccos α + 2πk.

    Идентичности със стойност tg x = a, където k е всяко цяло число:

    1. tg x = 0, x = π/2 + πk.
    2. tg x \u003d a, x \u003d arctg α + πk.

    Идентичности със стойност ctg x = a, където k е всяко цяло число:

    1. ctg x = 0, x = π/2 + πk.
    2. ctg x \u003d a, x \u003d arcctg α + πk.

    Актьорски формули

    Тази категория постоянни формули обозначава методи, чрез които можете да преминете от тригонометрични функции на формата към функции на аргумента, тоест да преобразувате синуса, косинуса, тангенса и котангенса на ъгъл с произволна стойност в съответните индикатори на ъгъла на интервала от 0 до 90 градуса за по-голямо удобство на изчисленията.

    Формулите за редуциране на функции за синус на ъгъл изглеждат така:

    • sin(900 - α) = α;
    • sin(900 + α) = cos α;
    • sin(1800 - α) = sin α;
    • sin(1800 + α) = -sin α;
    • sin(2700 - α) = -cos α;
    • sin(2700 + α) = -cos α;
    • sin(3600 - α) = -sin α;
    • sin(3600 + α) = sin α.

    За косинус на ъгъл:

    • cos(900 - α) = sin α;
    • cos(900 + α) = -sin α;
    • cos(1800 - α) = -cos α;
    • cos(1800 + α) = -cos α;
    • cos(2700 - α) = -sin α;
    • cos(2700 + α) = sin α;
    • cos(3600 - α) = cos α;
    • cos(3600 + α) = cos α.

    Използването на горните формули е възможно при спазване на две правила. Първо, ако ъгълът може да бъде представен като стойност (π/2 ± a) или (3π/2 ± a), стойността на функцията се променя:

    • от грях към cos;
    • от cos към грях;
    • от tg до ctg;
    • от ctg до tg.

    Стойността на функцията остава непроменена, ако ъгълът може да бъде представен като (π ± a) или (2π ± a).

    Второ, знакът на намалената функция не се променя: ако първоначално е бил положителен, той остава такъв. Същото важи и за отрицателните функции.

    Формули за добавяне

    Тези формули изразяват стойностите на синуса, косинуса, тангенса и котангенса на сумата и разликата на два ъгъла на завъртане по отношение на техните тригонометрични функции. Ъглите обикновено се означават като α и β.

    Формулите изглеждат така:

    1. sin(α ± β) = sin α * cos β ± cos α * sin.
    2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
    3. tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α * tan β).
    4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

    Тези формули са валидни за всякакви ъгли α и β.

    Формули за двоен и троен ъгъл

    Тригонометричните формули на двоен и троен ъгъл са формули, които свързват функциите съответно на ъглите 2α и 3α с тригонометричните функции на ъгъла α. Изведено от формули за добавяне:

    1. sin2α = 2sinα*cosα.
    2. cos2α = 1 - 2sin^2α.
    3. tg2α = 2tgα / (1 - tg^2 α).
    4. sin3α = 3sinα - 4sin^3α.
    5. cos3α = 4cos^3α - 3cosα.
    6. tg3α = (3tgα - tg^3 α) / (1-tg^2 α).

    Преход от сума към произведение

    Като се има предвид, че 2sinx*cosy = sin(x+y) + sin(x-y), опростявайки тази формула, получаваме идентичността sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. По същия начин sinα - sinβ = 2sin(α - β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα - cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

    Преход от произведение към сбор

    Тези формули следват от тъждествата за прехода на сбора към произведението:

    • sinα * sinβ = 1/2*;
    • cosα * cosβ = 1/2*;
    • sinα * cosβ = 1/2*.

    Формули за намаляване

    В тези идентичности квадратните и кубичните степени на синуса и косинуса могат да бъдат изразени чрез синуса и косинуса на първата степен на кратен ъгъл:

    • sin^2 α = (1 - cos2α)/2;
    • cos^2α = (1 + cos2α)/2;
    • sin^3 α = (3 * sinα - sin3α)/4;
    • cos^3 α = (3 * cosα + cos3α)/4;
    • sin^4 α = (3 - 4cos2α + cos4α)/8;
    • cos^4 α = (3 + 4cos2α + cos4α)/8.

    Универсално заместване

    Универсалните тригонометрични формули за заместване изразяват тригонометричните функции по отношение на тангенса на половин ъгъл.

    • sin x \u003d (2tgx / 2) * (1 + tg ^ 2 x / 2), докато x \u003d π + 2πn;
    • cos x = (1 - tg^2 x/2) / (1 + tg^2 x/2), където x = π + 2πn;
    • tg x \u003d (2tgx / 2) / (1 - tg ^ 2 x / 2), където x \u003d π + 2πn;
    • ctg x \u003d (1 - tg ^ 2 x / 2) / (2tgx / 2), докато x \u003d π + 2πn.

    Особени случаи

    По-долу са дадени частни случаи на най-простите тригонометрични уравнения (k е всяко цяло число).

    Частно за синус:

    sin x стойност x стойност
    0 pk
    1 π/2 + 2πk
    -1 -π/2 + 2πk
    1/2 π/6 + 2πk или 5π/6 + 2πk
    -1/2 -π/6 + 2πk или -5π/6 + 2πk
    √2/2 π/4 + 2πk или 3π/4 + 2πk
    -√2/2 -π/4 + 2πk или -3π/4 + 2πk
    √3/2 π/3 + 2πk или 2π/3 + 2πk
    -√3/2 -π/3 + 2πk или -2π/3 + 2πk

    Косинусови коефициенти:

    cos x стойност x стойност
    0 π/2 + 2πk
    1 2πk
    -1 2 + 2πk
    1/2 ±π/3 + 2πk
    -1/2 ±2π/3 + 2πk
    √2/2 ±π/4 + 2πk
    -√2/2 ±3π/4 + 2πk
    √3/2 ±π/6 + 2πk
    -√3/2 ±5π/6 + 2πk

    Частен за допирателната:

    tg x стойност x стойност
    0 pk
    1 π/4 + πk
    -1 -π/4 + πk
    √3/3 π/6 + πk
    -√3/3 -π/6 + πk
    √3 π/3 + πk
    -√3 -π/3 + πk

    Котангенсни коефициенти:

    ctg x стойност x стойност
    0 π/2 + πk
    1 π/4 + πk
    -1 -π/4 + πk
    √3 π/6 + πk
    -√3 -π/3 + πk
    √3/3 π/3 + πk
    -√3/3 -π/3 + πk

    Теореми

    Синусова теорема

    Има две версии на теоремата - проста и разширена. Проста синусова теорема: a/sin α = b/sin β = c/sin γ. В този случай a, b, c са страните на триъгълника, а α, β, γ са противоположните ъгли, съответно.

    Разширена синусова теорема за произволен триъгълник: a/sin α = b/sin β = c/sin γ = 2R. В това тъждество R означава радиуса на окръжността, в която е вписан дадения триъгълник.

    Косинусова теорема

    Идентичността се показва по следния начин: a^2 = b^2 + c^2 - 2*b*c*cos α. Във формулата a, b, c са страните на триъгълника, а α е ъгълът срещу страната a.

    Теорема за допирателната

    Формулата изразява връзката между тангентите на два ъгъла и дължината на страните срещу тях. Страните са обозначени с a, b, c, а съответните противоположни ъгли са α, β, γ. Формулата на теоремата за допирателната: (a - b) / (a+b) = tg((α - β)/2) / tg((α + β)/2).

    Теорема за котангенса

    Свързва радиуса на окръжност, вписана в триъгълник, с дължината на страните му. Ако a, b, c са страните на триъгълник и съответно A, B, C са противоположните им ъгли, r е радиусът на вписаната окръжност и p е полупериметърът на триъгълника, важат следните тъждества:

    • ctg A/2 = (p-a)/r;
    • ctg B/2 = (p-b)/r;
    • ctg C/2 = (p-c)/r.

    Приложения

    Тригонометрията не е само теоретична наука, свързана с математически формули. Неговите свойства, теореми и правила се използват на практика от различни отрасли на човешката дейност - астрономия, въздушна и морска навигация, теория на музиката, геодезия, химия, акустика, оптика, електроника, архитектура, икономика, машиностроене, измервателна дейност, компютърна графика, картография, океанография и много други.

    Синус, косинус, тангенс и котангенс са основните понятия на тригонометрията, с които можете математически да изразите връзката между ъглите и дължините на страните в триъгълник и да намерите желаните количества чрез идентичности, теореми и правила.

    Просто казано, това са зеленчуци, приготвени във вода по специална рецепта. Ще разгледам два първоначални компонента (зеленчукова салата и вода) и крайния резултат - борш. Геометрично това може да бъде представено като правоъгълник, в който едната страна означава маруля, а другата страна обозначава вода. Сумата от тези две страни ще означава борш. Диагоналът и площта на такъв правоъгълник "борш" са чисто математически понятия и никога не се използват в рецепти за борш.


    Как марулята и водата се превръщат в борш от гледна точка на математиката? Как сумата от два сегмента може да се превърне в тригонометрия? За да разберем това, имаме нужда от линейни ъглови функции.


    Няма да намерите нищо за функциите на линейния ъгъл в учебниците по математика. Но без тях не може да има математика. Законите на математиката, както и законите на природата, работят независимо дали знаем, че съществуват или не.

    Линейните ъглови функции са законите на събирането.Вижте как алгебрата се превръща в геометрия и как геометрията се превръща в тригонометрия.

    Възможно ли е без линейни ъглови функции? Можете, защото математиците все още се справят без тях. Номерът на математиците се крие във факта, че те винаги ни казват само за онези проблеми, които те самите могат да решат, и никога не ни казват за онези проблеми, които не могат да решат. Вижте. Ако знаем резултата от събирането и един член, използваме изваждане, за да намерим другия член. Всичко. Други проблеми не познаваме и не сме в състояние да ги решим. Какво да правим, ако знаем само резултата от събирането и не знаем и двата члена? В този случай резултатът от събирането трябва да се разложи на два члена с помощта на линейни ъглови функции. Освен това ние сами избираме какъв може да бъде един член, а линейните ъглови функции показват какъв трябва да бъде вторият член, за да бъде резултатът от събирането точно това, което ни трябва. Може да има безкраен брой такива двойки термини. В ежедневието се справяме много добре, без да разлагаме сумата; изваждането ни е достатъчно. Но в научните изследвания на законите на природата, разширяването на сумата в термини може да бъде много полезно.

    Друг закон за добавяне, за който математиците не обичат да говорят (още един техен трик) изисква членовете да имат една и съща мерна единица. За маруля, вода и борш това могат да бъдат единици за тегло, обем, цена или мерна единица.

    Фигурата показва две нива на разлика за математика. Първото ниво са разликите в полето на числата, които са посочени а, b, ° С. Това правят математиците. Второто ниво са разликите в областта на мерните единици, които са показани в квадратни скоби и са обозначени с буквата U. Това правят физиците. Можем да разберем третото ниво - разликите в обхвата на описваните обекти. Различните обекти могат да имат еднакъв брой едни и същи мерни единици. Колко важно е това, можем да видим на примера на тригонометрията на борша. Ако добавим индекси към една и съща нотация за мерните единици на различни обекти, можем да кажем точно коя математическа величина описва конкретен обект и как се променя във времето или във връзка с нашите действия. писмо УЩе отбележа водата с буквата СЩе отбележа салатата с буквата б- борш. Ето как ще изглеждат функциите на линейния ъгъл за борш.

    Ако вземем част от водата и част от салатата, заедно те ще се превърнат в една порция борш. Предлагам ви да си починете малко от борша и да си спомните далечното си детство. Помните ли как ни учеха да събираме зайчета и патета заедно? Трябваше да се намери колко животни ще се окажат. Какво тогава са ни учили да правим? Учеха ни да отделяме единици от числа и да събираме числа. Да, всяко число може да се добави към всяко друго число. Това е пряк път към аутизма на съвременната математика - ние не разбираме какво, не е ясно защо и много слабо разбираме как това е свързано с реалността, защото от трите нива на разлика математиците оперират само с едно. Ще бъде по-правилно да се научите как да преминавате от една мерна единица към друга.

    И зайчетата, и патетата, и зверчетата могат да се броят на части. Една обща мерна единица за различни обекти ни позволява да ги събираме заедно. Това е детска версия на проблема. Нека да разгледаме подобен проблем за възрастни. Какво получавате, когато добавите зайчета и пари? Тук има две възможни решения.

    Първи вариант. Ние определяме пазарната стойност на зайчетата и я добавяме към наличните пари. Получаваме общата стойност на нашето богатство в пари.

    Втори вариант. Можете да добавите броя на зайчетата към броя на банкнотите, които имаме. Ще получим количеството движимо имущество на части.

    Както можете да видите, един и същ закон за събиране ви позволява да получите различни резултати. Всичко зависи от това какво точно искаме да знаем.

    Но обратно към нашия борш. Сега можем да видим какво ще се случи за различни стойности на ъгъла на функциите на линейния ъгъл.

    Ъгълът е нула. Имаме салата, но нямаме вода. Не можем да сготвим борш. Количеството борш също е нула. Това изобщо не означава, че нула борш е нула вода. Нулевият борш може да бъде и при нулева салата (прав ъгъл).


    За мен лично това е основното математическо доказателство за факта, че . Нулата не променя числото при добавяне. Това е така, защото самото събиране е невъзможно, ако има само един член и вторият член липсва. Можете да се отнасяте към това както искате, но помнете - всички математически операции с нула са измислени от самите математици, така че изхвърлете логиката си и глупаво натъпчете определенията, измислени от математиците: "делението на нула е невъзможно", "всяко число, умножено по нула, е равно на нула", "зад точката нула" и други глупости. Достатъчно е да запомните веднъж, че нулата не е число и никога няма да имате въпрос дали нулата е естествено число или не, защото такъв въпрос обикновено губи всякакъв смисъл: как може да се смята за число това, което не е число. Все едно да питаш на кой цвят да припишеш невидим цвят. Добавянето на нула към число е като рисуване с боя, която не съществува. Те размахват суха четка и казват на всички, че "боядисахме". Но се отклоних малко.

    Ъгълът е по-голям от нула, но по-малък от четиридесет и пет градуса. Имаме много маруля, но малко вода. В резултат на това получаваме гъст борш.

    Ъгълът е четиридесет и пет градуса. Разполагаме с равни количества вода и маруля. Това е идеалният борш (да ме простят готвачите, това е просто математика).

    Ъгълът е по-голям от четиридесет и пет градуса, но по-малък от деветдесет градуса. Имаме много вода и малко маруля. Вземете течен борш.

    Прав ъгъл. Имаме вода. От марулята остават само спомени, докато продължаваме да измерваме ъгъла от линията, която някога е маркирала марулята. Не можем да сготвим борш. Количеството борш е нула. В такъв случай изчакайте и пийте вода, докато има)))

    Тук. Нещо като това. Тук мога да разкажа и други истории, които ще са повече от подходящи тук.

    Двамата приятели имаха своите дялове в общия бизнес. След убийството на единия всичко отиде при другия.

    Появата на математиката на нашата планета.

    Всички тези истории са разказани на езика на математиката с помощта на линейни ъглови функции. Някой друг път ще ви покажа истинското място на тези функции в структурата на математиката. Междувременно нека се върнем към тригонометрията на борша и да разгледаме проекциите.

    Събота, 26 октомври 2019 г

    сряда, 7 август 2019 г

    Завършвайки разговора за , трябва да разгледаме безкраен набор. Предадох, че понятието "безкрайност" действа на математиците като боа на заек. Трептящият ужас на безкрайността лишава математиците от здрав разум. Ето един пример:

    Първоизточникът е локализиран. Алфата означава реално число. Знакът за равенство в горните изрази показва, че ако добавите число или безкрайност към безкрайност, нищо няма да се промени, резултатът ще бъде същата безкрайност. Ако вземем за пример безкраен набор от естествени числа, тогава разглежданите примери могат да бъдат представени по следния начин:

    За да докажат визуално своя случай, математиците са измислили много различни методи. Лично аз гледам на всички тези методи като на танци на шамани с тамбури. По същество всички те се свеждат до факта, че или някои от стаите не са заети и в тях се настаняват нови гости, или част от посетителите са изхвърлени в коридора, за да направят място за гостите (много човешки). Представих моето виждане за подобни решения под формата на фантастична история за Блондинката. На какво се основават разсъжденията ми? Преместването на безкраен брой посетители отнема безкрайно много време. След като освободим първата стая за гости, един от посетителите винаги ще върви по коридора от стаята си до следващата до края на времето. Разбира се, факторът време може да бъде глупаво пренебрегнат, но това вече ще бъде от категорията „законът не е написан за глупаци“. Всичко зависи от това какво правим: приспособяваме реалността към математическите теории или обратното.

    Какво е "безкраен хотел"? Infinity inn е хан, който винаги има произволен брой свободни места, без значение колко стаи са заети. Ако всички стаи в безкрайния коридор "за посетители" са заети, остава още един безкраен коридор със стаи за "гости". Ще има безкрайно много такива коридори. В същото време „безкрайният хотел“ има безкраен брой етажи в безкраен брой сгради на безкраен брой планети в безкраен брой вселени, създадени от безкраен брой богове. Математиците, от друга страна, не могат да се отдалечат от баналните битови проблеми: Бог-Аллах-Буда винаги е само един, хотелът е един, коридорът е само един. Така че математиците се опитват да жонглират с поредните номера на хотелските стаи, убеждавайки ни, че е възможно да "бутнем ненатиснатото".

    Ще ви демонстрирам логиката на разсъжденията си на примера на безкраен набор от естествени числа. Първо трябва да отговорите на един много прост въпрос: колко набора от естествени числа съществуват - един или много? Няма правилен отговор на този въпрос, тъй като ние сами сме измислили числата, в природата няма числа. Да, природата знае как да брои перфектно, но за това тя използва други математически инструменти, които не са ни познати. Както природата мисли, друг път ще ви кажа. Тъй като сме измислили числата, ние сами ще решим колко набора от естествени числа съществуват. Обмислете и двата варианта, както подобава на истински учен.

    Вариант едно. „Нека ни бъде даден“ единичен набор от естествени числа, който лежи спокойно на рафт. Взимаме този комплект от рафта. Това е, други естествени числа не останаха на рафта и няма къде да ги вземете. Не можем да добавим такъв към този набор, тъй като вече го имаме. Ами ако наистина искате? Няма проблем. Можем да вземем единица от вече взетия комплект и да я върнем на рафта. След това можем да вземем единица от рафта и да я добавим към това, което ни е останало. В резултат на това отново получаваме безкраен набор от естествени числа. Можете да напишете всички наши манипулации така:

    Записал съм операциите в алгебрична нотация и в нотация на теория на множествата, като подробно изброявам елементите на множеството. Долният индекс показва, че имаме един и единствен набор от естествени числа. Оказва се, че множеството от естествени числа ще остане непроменено само ако от него се извади едно и се добави същото.

    Вариант две. Имаме много различни безкрайни набори от естествени числа на рафта. Подчертавам - РАЗЛИЧНИ, въпреки факта, че практически не се различават. Взимаме един от тези комплекти. След това вземаме едно от друго множество естествени числа и го добавяме към множеството, което вече сме взели. Можем дори да съберем две групи естествени числа. Ето какво получаваме:

    Долните индекси "едно" и "две" показват, че тези елементи принадлежат към различни множества. Да, ако добавите един към безкраен набор, резултатът също ще бъде безкраен набор, но няма да бъде същият като оригиналния набор. Ако към едно безкрайно множество се добави друго безкрайно множество, резултатът е ново безкрайно множество, състоящо се от елементите на първите две множества.

    Наборът от естествени числа се използва за броене по същия начин като линийка за измервания. Сега си представете, че сте добавили един сантиметър към линийката. Това вече ще бъде различна линия, не е равна на оригинала.

    Можете да приемете или да не приемете разсъжденията ми - това е ваша работа. Но ако някога се сблъскате с математически проблеми, помислете дали не сте на пътя на фалшивите разсъждения, утъпкан от поколения математици. В края на краищата часовете по математика, на първо място, формират у нас стабилен стереотип на мислене и едва след това ни добавят умствени способности (или обратното, лишават ни от свободно мислене).

    pozg.ru

    Неделя, 4 август 2019 г

    Пишех послепис към статия за и видях този прекрасен текст в Уикипедия:

    Четем: „... богатата теоретична основа на вавилонската математика нямаше холистичен характер и беше сведена до набор от различни техники, лишени от обща система и доказателствена база.“

    Еха! Колко сме умни и колко добре виждаме недостатъците на другите. Слабо ли ни е да разглеждаме съвременната математика в същия контекст? Перифразирайки леко горния текст, лично аз получих следното:

    Богатата теоретична база на съвременната математика няма холистичен характер и се свежда до набор от различни раздели, лишени от обща система и доказателствена база.

    Няма да отивам далеч, за да потвърдя думите си - тя има език и конвенции, които са различни от езика и конвенциите на много други клонове на математиката. Едни и същи имена в различните клонове на математиката могат да имат различно значение. Искам да посветя цял цикъл от публикации на най-очевидните грешки на съвременната математика. Ще се видим скоро.

    Събота, 3 август 2019 г

    Как да разделим набор на подмножества? За да направите това, трябва да въведете нова мерна единица, която присъства в някои от елементите на избрания комплект. Помислете за пример.

    Нека имаме много Асъстоящ се от четирима души. Това множество се формира на базата на "хора". Нека обозначим елементите на това множество чрез буквата А, индексът с цифра ще показва поредния номер на всяко лице в този набор. Нека въведем нова мерна единица "полов признак" и да я обозначим с буквата b. Тъй като сексуалните характеристики са присъщи на всички хора, ние умножаваме всеки елемент от набора Ана пола b. Забележете, че нашият набор „хора“ вече е станал набор „хора с пол“. След това можем да разделим половите белези на мъжки bmи дамски bwполови характеристики. Сега можем да приложим математически филтър: избираме една от тези сексуални характеристики, без значение кой е мъж или жена. Ако той присъства в човек, тогава го умножаваме по едно, ако няма такъв знак, го умножаваме по нула. И тогава прилагаме обичайната училищна математика. Вижте какво стана.

    След умножение, съкращения и пренареждане, получихме две подмножества: мъжкото подмножество bmи подгрупа от жени bw. Приблизително по същия начин разсъждават математиците, когато прилагат теорията на множествата на практика. Но те не ни позволяват да навлезем в подробностите, а ни дават крайния резултат - "много хора се състоят от подгрупа от мъже и подгрупа от жени." Естествено, може да имате въпрос, колко правилно е приложена математиката в горните трансформации? Смея да ви уверя, че всъщност трансформациите се извършват правилно, достатъчно е да знаете математическата обосновка на аритметиката, булевата алгебра и други раздели на математиката. Какво е? Някой друг път ще ви разкажа за това.

    Що се отнася до супермножествата, възможно е да комбинирате два комплекта в един супермножество, като изберете мерна единица, която присъства в елементите на тези два комплекта.

    Както можете да видите, мерните единици и общата математика правят теорията на множествата нещо от миналото. Знак, че не всичко е наред с теорията на множествата е, че математиците са измислили свой собствен език и нотация за теорията на множествата. Математиците направиха това, което някога направиха шаманите. Само шаманите знаят как да прилагат "правилно" своите "знания". Това "знание" ни учат.

    И накрая, искам да ви покажа как математиците манипулират.

    Понеделник, 7 януари 2019 г

    През V век пр. н. е. древногръцкият философ Зенон от Елея формулира своите известни апории, най-известната от които е апорията „Ахил и костенурката“. Ето как звучи:

    Да кажем, че Ахил тича десет пъти по-бързо от костенурката и е на хиляда крачки зад нея. През времето, през което Ахил изминава това разстояние, костенурката изпълзява стотина стъпки в същата посока. Когато Ахил измине сто крачки, костенурката ще пропълзи още десет крачки и т.н. Процесът ще продължи безкрайно, Ахил никога няма да настигне костенурката.

    Това разсъждение се превърна в логичен шок за всички следващи поколения. Аристотел, Диоген, Кант, Хегел, Гилберт... Всички те, по един или друг начин, разглеждат апориите на Зенон. Шокът беше толкова силен, че " ... дискусиите продължават и в момента, научната общност все още не е успяла да стигне до общо мнение относно същността на парадоксите ... математически анализ, теория на множествата, нови физически и философски подходи бяха включени в изследването на въпроса; нито едно от тях не стана общоприето решение на проблема ..."[Уикипедия," Апориите на Зенон "]. Всички разбират, че са заблудени, но никой не разбира каква е измамата.

    От гледна точка на математиката, Зенон в своята апория ясно демонстрира прехода от стойността към. Този преход предполага прилагане вместо константи. Доколкото разбирам, математическият апарат за прилагане на променливи мерни единици или все още не е разработен, или не е приложен към апориите на Зенон. Прилагането на обичайната ни логика ни вкарва в капан. Ние, по инерцията на мисленето, прилагаме постоянни единици време към реципрочното. От физическа гледна точка изглежда, че времето се забавя до пълно спиране в момента, в който Ахил настига костенурката. Ако времето спре, Ахил вече не може да изпревари костенурката.

    Ако обърнем логиката, с която сме свикнали, всичко си идва на мястото. Ахил тича с постоянна скорост. Всеки следващ сегмент от пътя му е десет пъти по-кратък от предишния. Съответно времето, прекарано за преодоляването му, е десет пъти по-малко от предишното. Ако приложим концепцията за „безкрайност“ в тази ситуация, тогава би било правилно да кажем „Ахил безкрайно бързо ще изпревари костенурката“.

    Как да избегнем този логически капан? Останете в постоянни единици за време и не преминавайте към реципрочни стойности. На езика на Зенон това изглежда така:

    За времето, необходимо на Ахил да измине хиляда крачки, костенурката пълзи стотина крачки в същата посока. През следващия интервал от време, равен на първия, Ахил ще направи още хиляда стъпки, а костенурката ще пропълзи сто стъпки. Сега Ахил е на осемстотин крачки пред костенурката.

    Този подход описва адекватно реалността без никакви логически парадокси. Но това не е пълно решение на проблема. Твърдението на Айнщайн за непреодолимостта на скоростта на светлината е много подобно на апорията на Зенон "Ахил и костенурката". Предстои ни да проучим, преосмислим и решим този проблем. И решението трябва да се търси не в безкрайно големи числа, а в мерни единици.

    Друга интересна апория на Зенон разказва за летяща стрела:

    Летящата стрела е неподвижна, тъй като във всеки момент от времето тя е в покой, и тъй като е в покой във всеки момент от времето, тя винаги е в покой.

    В тази апория логическият парадокс се преодолява много просто – достатъчно е да се изясни, че във всеки момент летящата стрела се опира в различни точки в пространството, което всъщност е движение. Тук трябва да се отбележи още един момент. От една снимка на автомобил на пътя е невъзможно да се определи нито фактът на неговото движение, нито разстоянието до него. За да се определи фактът на движение на автомобила, са необходими две снимки, направени от една и съща точка в различни моменти във времето, но те не могат да се използват за определяне на разстоянието. За да определите разстоянието до колата, имате нужда от две снимки, направени от различни точки в пространството едновременно, но не можете да определите факта на движение от тях (естествено, все още имате нужда от допълнителни данни за изчисления, тригонометрията ще ви помогне). Това, което искам да отбележа по-специално, е, че две точки във времето и две точки в пространството са две различни неща, които не трябва да се бъркат, тъй като предоставят различни възможности за изследване.
    Ще покажа процеса с пример. Избираме "червено твърдо вещество в пъпка" - това е нашето "цяло". В същото време виждаме, че тези неща са с лък, а има и без лък. След това избираме част от "цялото" и оформяме комплект "с лък". Ето как шаманите се изхранват, като обвързват своята теория за множествата с реалността.

    Сега нека направим малък трик. Нека вземем "твърдо в пъпка с лък" и обединим тези "цяли" по цвят, избирайки червени елементи. Имаме много "червени". Сега един труден въпрос: получените комплекти "с лък" и "червен" един и същи комплект ли са или два различни комплекта? Само шаманите знаят отговора. По-точно те самите не знаят нищо, но както казват, така да бъде.

    Този прост пример показва, че теорията на множествата е напълно безполезна, когато става въпрос за реалността. каква е тайната Оформихме набор от "червена плътна пъпка с лък". Оформянето се извършва според четири различни мерни единици: цвят (червено), здравина (твърдо), грапавост (в изпъкналост), декорации (с лък). Само набор от мерни единици дава възможност за адекватно описание на реални обекти на езика на математиката. Ето как изглежда.

    Буквата "а" с различни индекси означава различни мерни единици. В скоби са подчертани мерните единици, според които "цялото" се разпределя на предварителния етап. Извън скоби е извадена мерната единица, по която се формира комплектът. Последният ред показва крайния резултат - елемент от множеството. Както можете да видите, ако използваме единици, за да образуваме набор, тогава резултатът не зависи от реда на нашите действия. И това е математика, а не танците на шаманите с тамбури. Шаманите могат „интуитивно“ да стигнат до същия резултат, аргументирайки го с „очевидност“, тъй като мерните единици не са включени в техния „научен“ арсенал.

    С помощта на мерни единици е много лесно да разбиете един или да комбинирате няколко комплекта в един суперсет. Нека разгледаме по-подробно алгебрата на този процес.

    Там, където се разглеждаха задачите за решаване на правоъгълен триъгълник, обещах да представя техника за запомняне на определенията за синус и косинус. Използвайки го, вие винаги бързо ще запомните кой крак принадлежи на хипотенузата (съседна или противоположна). Реших да не го отлагам за неопределено време, необходимият материал е по-долу, моля, прочетете го 😉

    Факт е, че многократно съм наблюдавал как учениците от 10-11 клас трудно запомнят тези определения. Много добре помнят, че катетът се отнася за хипотенузата, но коя- забравете и объркан. Цената на грешката, както знаете на изпита, е загубен резултат.

    Информацията, която ще представя директно към математиката, няма нищо общо. Свързва се с образното мислене и с методите на словесно-логическата връзка. Точно така, аз самият, веднъж завинаги си спомнихданни за дефиниция. Ако все пак ги забравите, тогава с помощта на представените техники винаги е лесно да си спомните.

    Нека ви напомня дефинициите на синус и косинус в правоъгълен триъгълник:

    Косинусостър ъгъл в правоъгълен триъгълник е съотношението на съседния катет към хипотенузата:

    синуситеостър ъгъл в правоъгълен триъгълник е отношението на срещуположния катет към хипотенузата:

    И така, какви асоциации предизвиква у вас думата косинус?

    Вероятно всеки има свой собственЗапомнете връзката:

    Така веднага ще имате израз в паметта си -

    «… съотношение на ПРИЛЕЖАЩИЯ катет към хипотенузата».

    Проблемът с дефиницията на косинус е решен.

    Ако трябва да запомните дефиницията на синуса в правоъгълен триъгълник, тогава като си спомните дефиницията на косинуса, можете лесно да установите, че синусът на остър ъгъл в правоъгълен триъгълник е съотношението на противоположния крак към хипотенузата. В края на краищата има само два крака, ако съседният крак е „зает“ от косинуса, тогава за синуса остава само противоположната страна.

    Какво ще кажете за тангенса и котангенса? Същото объркване. Учениците знаят, че това е съотношението на катетите, но проблемът е да запомнят кое към кое се отнася - или противоположно на съседни, или обратно.

    Дефиниции:

    Допирателнаостър ъгъл в правоъгълен триъгълник е отношението на срещуположния катет към съседния:

    Котангенсостър ъгъл в правоъгълен триъгълник е съотношението на съседния крак към противоположния:

    Как да запомните? Има два начина. Единият също използва словесно-логическа връзка, другият – математическа.

    МАТЕМАТИЧЕСКИ МЕТОД

    Има такова определение - тангенсът на остър ъгъл е съотношението на синуса на ъгъла към неговия косинус:

    * Спомняйки си формулата, винаги можете да определите, че тангентата на остър ъгъл в правоъгълен триъгълник е съотношението на срещуположния катет към съседния.

    По същия начин.Котангенсът на остър ъгъл е отношението на косинуса на ъгъл към неговия синус:

    Така! Спомняйки си тези формули, винаги можете да определите, че:

    - тангенсът на остър ъгъл в правоъгълен триъгълник е отношението на срещуположния катет към съседния

    - котангенсът на остър ъгъл в правоъгълен триъгълник е отношението на съседния катет към противоположния.

    СЛОВЕСНО-ЛОГИЧЕСКИ МЕТОД

    Относно допирателната. Запомнете връзката:

    Тоест, ако трябва да запомните дефиницията на допирателната, използвайки тази логическа връзка, лесно можете да си спомните какво е

    "... съотношението на противоположния крак към съседния"

    Ако става въпрос за котангенс, тогава като си спомните определението за тангенс, можете лесно да изразите определението за котангенс -

    "... съотношението на съседния крак към противоположния"

    В сайта има интересна техника за запомняне на тангенс и котангенс " Математически тандем " , виж.

    МЕТОД УНИВЕРСАЛЕН

    Можете просто да смилате.Но както показва практиката, благодарение на вербално-логическите връзки човек помни информация за дълго време, а не само математическа.

    Надявам се материалът да ви е бил полезен.

    С уважение, Александър Крутицких

    P.S: Ще бъда благодарен, ако разкажете за сайта в социалните мрежи.

    Просто казано, това са зеленчуци, приготвени във вода по специална рецепта. Ще разгледам два първоначални компонента (зеленчукова салата и вода) и крайния резултат - борш. Геометрично това може да бъде представено като правоъгълник, в който едната страна означава маруля, а другата страна обозначава вода. Сумата от тези две страни ще означава борш. Диагоналът и площта на такъв правоъгълник "борш" са чисто математически понятия и никога не се използват в рецепти за борш.


    Как марулята и водата се превръщат в борш от гледна точка на математиката? Как сумата от два сегмента може да се превърне в тригонометрия? За да разберем това, имаме нужда от линейни ъглови функции.


    Няма да намерите нищо за функциите на линейния ъгъл в учебниците по математика. Но без тях не може да има математика. Законите на математиката, както и законите на природата, работят независимо дали знаем, че съществуват или не.

    Линейните ъглови функции са законите на събирането.Вижте как алгебрата се превръща в геометрия и как геометрията се превръща в тригонометрия.

    Възможно ли е без линейни ъглови функции? Можете, защото математиците все още се справят без тях. Номерът на математиците се крие във факта, че те винаги ни казват само за онези проблеми, които те самите могат да решат, и никога не ни казват за онези проблеми, които не могат да решат. Вижте. Ако знаем резултата от събирането и един член, използваме изваждане, за да намерим другия член. Всичко. Други проблеми не познаваме и не сме в състояние да ги решим. Какво да правим, ако знаем само резултата от събирането и не знаем и двата члена? В този случай резултатът от събирането трябва да се разложи на два члена с помощта на линейни ъглови функции. Освен това ние сами избираме какъв може да бъде един член, а линейните ъглови функции показват какъв трябва да бъде вторият член, за да бъде резултатът от събирането точно това, което ни трябва. Може да има безкраен брой такива двойки термини. В ежедневието се справяме много добре, без да разлагаме сумата; изваждането ни е достатъчно. Но в научните изследвания на законите на природата, разширяването на сумата в термини може да бъде много полезно.

    Друг закон за добавяне, за който математиците не обичат да говорят (още един техен трик) изисква членовете да имат една и съща мерна единица. За маруля, вода и борш това могат да бъдат единици за тегло, обем, цена или мерна единица.

    Фигурата показва две нива на разлика за математика. Първото ниво са разликите в полето на числата, които са посочени а, b, ° С. Това правят математиците. Второто ниво са разликите в областта на мерните единици, които са показани в квадратни скоби и са обозначени с буквата U. Това правят физиците. Можем да разберем третото ниво - разликите в обхвата на описваните обекти. Различните обекти могат да имат еднакъв брой едни и същи мерни единици. Колко важно е това, можем да видим на примера на тригонометрията на борша. Ако добавим индекси към една и съща нотация за мерните единици на различни обекти, можем да кажем точно коя математическа величина описва конкретен обект и как се променя във времето или във връзка с нашите действия. писмо УЩе отбележа водата с буквата СЩе отбележа салатата с буквата б- борш. Ето как ще изглеждат функциите на линейния ъгъл за борш.

    Ако вземем част от водата и част от салатата, заедно те ще се превърнат в една порция борш. Предлагам ви да си починете малко от борша и да си спомните далечното си детство. Помните ли как ни учеха да събираме зайчета и патета заедно? Трябваше да се намери колко животни ще се окажат. Какво тогава са ни учили да правим? Учеха ни да отделяме единици от числа и да събираме числа. Да, всяко число може да се добави към всяко друго число. Това е пряк път към аутизма на съвременната математика - ние не разбираме какво, не е ясно защо и много слабо разбираме как това е свързано с реалността, защото от трите нива на разлика математиците оперират само с едно. Ще бъде по-правилно да се научите как да преминавате от една мерна единица към друга.

    И зайчетата, и патетата, и зверчетата могат да се броят на части. Една обща мерна единица за различни обекти ни позволява да ги събираме заедно. Това е детска версия на проблема. Нека да разгледаме подобен проблем за възрастни. Какво получавате, когато добавите зайчета и пари? Тук има две възможни решения.

    Първи вариант. Ние определяме пазарната стойност на зайчетата и я добавяме към наличните пари. Получаваме общата стойност на нашето богатство в пари.

    Втори вариант. Можете да добавите броя на зайчетата към броя на банкнотите, които имаме. Ще получим количеството движимо имущество на части.

    Както можете да видите, един и същ закон за събиране ви позволява да получите различни резултати. Всичко зависи от това какво точно искаме да знаем.

    Но обратно към нашия борш. Сега можем да видим какво ще се случи за различни стойности на ъгъла на функциите на линейния ъгъл.

    Ъгълът е нула. Имаме салата, но нямаме вода. Не можем да сготвим борш. Количеството борш също е нула. Това изобщо не означава, че нула борш е нула вода. Нулевият борш може да бъде и при нулева салата (прав ъгъл).


    За мен лично това е основното математическо доказателство за факта, че . Нулата не променя числото при добавяне. Това е така, защото самото събиране е невъзможно, ако има само един член и вторият член липсва. Можете да се отнасяте към това както искате, но помнете - всички математически операции с нула са измислени от самите математици, така че изхвърлете логиката си и глупаво натъпчете определенията, измислени от математиците: "делението на нула е невъзможно", "всяко число, умножено по нула, е равно на нула", "зад точката нула" и други глупости. Достатъчно е да запомните веднъж, че нулата не е число и никога няма да имате въпрос дали нулата е естествено число или не, защото такъв въпрос обикновено губи всякакъв смисъл: как може да се смята за число това, което не е число. Все едно да питаш на кой цвят да припишеш невидим цвят. Добавянето на нула към число е като рисуване с боя, която не съществува. Те размахват суха четка и казват на всички, че "боядисахме". Но се отклоних малко.

    Ъгълът е по-голям от нула, но по-малък от четиридесет и пет градуса. Имаме много маруля, но малко вода. В резултат на това получаваме гъст борш.

    Ъгълът е четиридесет и пет градуса. Разполагаме с равни количества вода и маруля. Това е идеалният борш (да ме простят готвачите, това е просто математика).

    Ъгълът е по-голям от четиридесет и пет градуса, но по-малък от деветдесет градуса. Имаме много вода и малко маруля. Вземете течен борш.

    Прав ъгъл. Имаме вода. От марулята остават само спомени, докато продължаваме да измерваме ъгъла от линията, която някога е маркирала марулята. Не можем да сготвим борш. Количеството борш е нула. В такъв случай изчакайте и пийте вода, докато има)))

    Тук. Нещо като това. Тук мога да разкажа и други истории, които ще са повече от подходящи тук.

    Двамата приятели имаха своите дялове в общия бизнес. След убийството на единия всичко отиде при другия.

    Появата на математиката на нашата планета.

    Всички тези истории са разказани на езика на математиката с помощта на линейни ъглови функции. Някой друг път ще ви покажа истинското място на тези функции в структурата на математиката. Междувременно нека се върнем към тригонометрията на борша и да разгледаме проекциите.

    Събота, 26 октомври 2019 г

    сряда, 7 август 2019 г

    Завършвайки разговора за , трябва да разгледаме безкраен набор. Предадох, че понятието "безкрайност" действа на математиците като боа на заек. Трептящият ужас на безкрайността лишава математиците от здрав разум. Ето един пример:

    Първоизточникът е локализиран. Алфата означава реално число. Знакът за равенство в горните изрази показва, че ако добавите число или безкрайност към безкрайност, нищо няма да се промени, резултатът ще бъде същата безкрайност. Ако вземем за пример безкраен набор от естествени числа, тогава разглежданите примери могат да бъдат представени по следния начин:

    За да докажат визуално своя случай, математиците са измислили много различни методи. Лично аз гледам на всички тези методи като на танци на шамани с тамбури. По същество всички те се свеждат до факта, че или някои от стаите не са заети и в тях се настаняват нови гости, или част от посетителите са изхвърлени в коридора, за да направят място за гостите (много човешки). Представих моето виждане за подобни решения под формата на фантастична история за Блондинката. На какво се основават разсъжденията ми? Преместването на безкраен брой посетители отнема безкрайно много време. След като освободим първата стая за гости, един от посетителите винаги ще върви по коридора от стаята си до следващата до края на времето. Разбира се, факторът време може да бъде глупаво пренебрегнат, но това вече ще бъде от категорията „законът не е написан за глупаци“. Всичко зависи от това какво правим: приспособяваме реалността към математическите теории или обратното.

    Какво е "безкраен хотел"? Infinity inn е хан, който винаги има произволен брой свободни места, без значение колко стаи са заети. Ако всички стаи в безкрайния коридор "за посетители" са заети, остава още един безкраен коридор със стаи за "гости". Ще има безкрайно много такива коридори. В същото време „безкрайният хотел“ има безкраен брой етажи в безкраен брой сгради на безкраен брой планети в безкраен брой вселени, създадени от безкраен брой богове. Математиците, от друга страна, не могат да се отдалечат от баналните битови проблеми: Бог-Аллах-Буда винаги е само един, хотелът е един, коридорът е само един. Така че математиците се опитват да жонглират с поредните номера на хотелските стаи, убеждавайки ни, че е възможно да "бутнем ненатиснатото".

    Ще ви демонстрирам логиката на разсъжденията си на примера на безкраен набор от естествени числа. Първо трябва да отговорите на един много прост въпрос: колко набора от естествени числа съществуват - един или много? Няма правилен отговор на този въпрос, тъй като ние сами сме измислили числата, в природата няма числа. Да, природата знае как да брои перфектно, но за това тя използва други математически инструменти, които не са ни познати. Както природата мисли, друг път ще ви кажа. Тъй като сме измислили числата, ние сами ще решим колко набора от естествени числа съществуват. Обмислете и двата варианта, както подобава на истински учен.

    Вариант едно. „Нека ни бъде даден“ единичен набор от естествени числа, който лежи спокойно на рафт. Взимаме този комплект от рафта. Това е, други естествени числа не останаха на рафта и няма къде да ги вземете. Не можем да добавим такъв към този набор, тъй като вече го имаме. Ами ако наистина искате? Няма проблем. Можем да вземем единица от вече взетия комплект и да я върнем на рафта. След това можем да вземем единица от рафта и да я добавим към това, което ни е останало. В резултат на това отново получаваме безкраен набор от естествени числа. Можете да напишете всички наши манипулации така:

    Записал съм операциите в алгебрична нотация и в нотация на теория на множествата, като подробно изброявам елементите на множеството. Долният индекс показва, че имаме един и единствен набор от естествени числа. Оказва се, че множеството от естествени числа ще остане непроменено само ако от него се извади едно и се добави същото.

    Вариант две. Имаме много различни безкрайни набори от естествени числа на рафта. Подчертавам - РАЗЛИЧНИ, въпреки факта, че практически не се различават. Взимаме един от тези комплекти. След това вземаме едно от друго множество естествени числа и го добавяме към множеството, което вече сме взели. Можем дори да съберем две групи естествени числа. Ето какво получаваме:

    Долните индекси "едно" и "две" показват, че тези елементи принадлежат към различни множества. Да, ако добавите един към безкраен набор, резултатът също ще бъде безкраен набор, но няма да бъде същият като оригиналния набор. Ако към едно безкрайно множество се добави друго безкрайно множество, резултатът е ново безкрайно множество, състоящо се от елементите на първите две множества.

    Наборът от естествени числа се използва за броене по същия начин като линийка за измервания. Сега си представете, че сте добавили един сантиметър към линийката. Това вече ще бъде различна линия, не е равна на оригинала.

    Можете да приемете или да не приемете разсъжденията ми - това е ваша работа. Но ако някога се сблъскате с математически проблеми, помислете дали не сте на пътя на фалшивите разсъждения, утъпкан от поколения математици. В края на краищата часовете по математика, на първо място, формират у нас стабилен стереотип на мислене и едва след това ни добавят умствени способности (или обратното, лишават ни от свободно мислене).

    pozg.ru

    Неделя, 4 август 2019 г

    Пишех послепис към статия за и видях този прекрасен текст в Уикипедия:

    Четем: „... богатата теоретична основа на вавилонската математика нямаше холистичен характер и беше сведена до набор от различни техники, лишени от обща система и доказателствена база.“

    Еха! Колко сме умни и колко добре виждаме недостатъците на другите. Слабо ли ни е да разглеждаме съвременната математика в същия контекст? Перифразирайки леко горния текст, лично аз получих следното:

    Богатата теоретична база на съвременната математика няма холистичен характер и се свежда до набор от различни раздели, лишени от обща система и доказателствена база.

    Няма да отивам далеч, за да потвърдя думите си - тя има език и конвенции, които са различни от езика и конвенциите на много други клонове на математиката. Едни и същи имена в различните клонове на математиката могат да имат различно значение. Искам да посветя цял цикъл от публикации на най-очевидните грешки на съвременната математика. Ще се видим скоро.

    Събота, 3 август 2019 г

    Как да разделим набор на подмножества? За да направите това, трябва да въведете нова мерна единица, която присъства в някои от елементите на избрания комплект. Помислете за пример.

    Нека имаме много Асъстоящ се от четирима души. Това множество се формира на базата на "хора". Нека обозначим елементите на това множество чрез буквата А, индексът с цифра ще показва поредния номер на всяко лице в този набор. Нека въведем нова мерна единица "полов признак" и да я обозначим с буквата b. Тъй като сексуалните характеристики са присъщи на всички хора, ние умножаваме всеки елемент от набора Ана пола b. Забележете, че нашият набор „хора“ вече е станал набор „хора с пол“. След това можем да разделим половите белези на мъжки bmи дамски bwполови характеристики. Сега можем да приложим математически филтър: избираме една от тези сексуални характеристики, без значение кой е мъж или жена. Ако той присъства в човек, тогава го умножаваме по едно, ако няма такъв знак, го умножаваме по нула. И тогава прилагаме обичайната училищна математика. Вижте какво стана.

    След умножение, съкращения и пренареждане, получихме две подмножества: мъжкото подмножество bmи подгрупа от жени bw. Приблизително по същия начин разсъждават математиците, когато прилагат теорията на множествата на практика. Но те не ни позволяват да навлезем в подробностите, а ни дават крайния резултат - "много хора се състоят от подгрупа от мъже и подгрупа от жени." Естествено, може да имате въпрос, колко правилно е приложена математиката в горните трансформации? Смея да ви уверя, че всъщност трансформациите се извършват правилно, достатъчно е да знаете математическата обосновка на аритметиката, булевата алгебра и други раздели на математиката. Какво е? Някой друг път ще ви разкажа за това.

    Що се отнася до супермножествата, възможно е да комбинирате два комплекта в един супермножество, като изберете мерна единица, която присъства в елементите на тези два комплекта.

    Както можете да видите, мерните единици и общата математика правят теорията на множествата нещо от миналото. Знак, че не всичко е наред с теорията на множествата е, че математиците са измислили свой собствен език и нотация за теорията на множествата. Математиците направиха това, което някога направиха шаманите. Само шаманите знаят как да прилагат "правилно" своите "знания". Това "знание" ни учат.

    И накрая, искам да ви покажа как математиците манипулират.

    Понеделник, 7 януари 2019 г

    През V век пр. н. е. древногръцкият философ Зенон от Елея формулира своите известни апории, най-известната от които е апорията „Ахил и костенурката“. Ето как звучи:

    Да кажем, че Ахил тича десет пъти по-бързо от костенурката и е на хиляда крачки зад нея. През времето, през което Ахил изминава това разстояние, костенурката изпълзява стотина стъпки в същата посока. Когато Ахил измине сто крачки, костенурката ще пропълзи още десет крачки и т.н. Процесът ще продължи безкрайно, Ахил никога няма да настигне костенурката.

    Това разсъждение се превърна в логичен шок за всички следващи поколения. Аристотел, Диоген, Кант, Хегел, Гилберт... Всички те, по един или друг начин, разглеждат апориите на Зенон. Шокът беше толкова силен, че " ... дискусиите продължават и в момента, научната общност все още не е успяла да стигне до общо мнение относно същността на парадоксите ... математически анализ, теория на множествата, нови физически и философски подходи бяха включени в изследването на въпроса; нито едно от тях не стана общоприето решение на проблема ..."[Уикипедия," Апориите на Зенон "]. Всички разбират, че са заблудени, но никой не разбира каква е измамата.

    От гледна точка на математиката, Зенон в своята апория ясно демонстрира прехода от стойността към. Този преход предполага прилагане вместо константи. Доколкото разбирам, математическият апарат за прилагане на променливи мерни единици или все още не е разработен, или не е приложен към апориите на Зенон. Прилагането на обичайната ни логика ни вкарва в капан. Ние, по инерцията на мисленето, прилагаме постоянни единици време към реципрочното. От физическа гледна точка изглежда, че времето се забавя до пълно спиране в момента, в който Ахил настига костенурката. Ако времето спре, Ахил вече не може да изпревари костенурката.

    Ако обърнем логиката, с която сме свикнали, всичко си идва на мястото. Ахил тича с постоянна скорост. Всеки следващ сегмент от пътя му е десет пъти по-кратък от предишния. Съответно времето, прекарано за преодоляването му, е десет пъти по-малко от предишното. Ако приложим концепцията за „безкрайност“ в тази ситуация, тогава би било правилно да кажем „Ахил безкрайно бързо ще изпревари костенурката“.

    Как да избегнем този логически капан? Останете в постоянни единици за време и не преминавайте към реципрочни стойности. На езика на Зенон това изглежда така:

    За времето, необходимо на Ахил да измине хиляда крачки, костенурката пълзи стотина крачки в същата посока. През следващия интервал от време, равен на първия, Ахил ще направи още хиляда стъпки, а костенурката ще пропълзи сто стъпки. Сега Ахил е на осемстотин крачки пред костенурката.

    Този подход описва адекватно реалността без никакви логически парадокси. Но това не е пълно решение на проблема. Твърдението на Айнщайн за непреодолимостта на скоростта на светлината е много подобно на апорията на Зенон "Ахил и костенурката". Предстои ни да проучим, преосмислим и решим този проблем. И решението трябва да се търси не в безкрайно големи числа, а в мерни единици.

    Друга интересна апория на Зенон разказва за летяща стрела:

    Летящата стрела е неподвижна, тъй като във всеки момент от времето тя е в покой, и тъй като е в покой във всеки момент от времето, тя винаги е в покой.

    В тази апория логическият парадокс се преодолява много просто – достатъчно е да се изясни, че във всеки момент летящата стрела се опира в различни точки в пространството, което всъщност е движение. Тук трябва да се отбележи още един момент. От една снимка на автомобил на пътя е невъзможно да се определи нито фактът на неговото движение, нито разстоянието до него. За да се определи фактът на движение на автомобила, са необходими две снимки, направени от една и съща точка в различни моменти във времето, но те не могат да се използват за определяне на разстоянието. За да определите разстоянието до колата, имате нужда от две снимки, направени от различни точки в пространството едновременно, но не можете да определите факта на движение от тях (естествено, все още имате нужда от допълнителни данни за изчисления, тригонометрията ще ви помогне). Това, което искам да отбележа по-специално, е, че две точки във времето и две точки в пространството са две различни неща, които не трябва да се бъркат, тъй като предоставят различни възможности за изследване.
    Ще покажа процеса с пример. Избираме "червено твърдо вещество в пъпка" - това е нашето "цяло". В същото време виждаме, че тези неща са с лък, а има и без лък. След това избираме част от "цялото" и оформяме комплект "с лък". Ето как шаманите се изхранват, като обвързват своята теория за множествата с реалността.

    Сега нека направим малък трик. Нека вземем "твърдо в пъпка с лък" и обединим тези "цяли" по цвят, избирайки червени елементи. Имаме много "червени". Сега един труден въпрос: получените комплекти "с лък" и "червен" един и същи комплект ли са или два различни комплекта? Само шаманите знаят отговора. По-точно те самите не знаят нищо, но както казват, така да бъде.

    Този прост пример показва, че теорията на множествата е напълно безполезна, когато става въпрос за реалността. каква е тайната Оформихме набор от "червена плътна пъпка с лък". Оформянето се извършва според четири различни мерни единици: цвят (червено), здравина (твърдо), грапавост (в изпъкналост), декорации (с лък). Само набор от мерни единици дава възможност за адекватно описание на реални обекти на езика на математиката. Ето как изглежда.

    Буквата "а" с различни индекси означава различни мерни единици. В скоби са подчертани мерните единици, според които "цялото" се разпределя на предварителния етап. Извън скоби е извадена мерната единица, по която се формира комплектът. Последният ред показва крайния резултат - елемент от множеството. Както можете да видите, ако използваме единици, за да образуваме набор, тогава резултатът не зависи от реда на нашите действия. И това е математика, а не танците на шаманите с тамбури. Шаманите могат „интуитивно“ да стигнат до същия резултат, аргументирайки го с „очевидност“, тъй като мерните единици не са включени в техния „научен“ арсенал.

    С помощта на мерни единици е много лесно да разбиете един или да комбинирате няколко комплекта в един суперсет. Нека разгледаме по-подробно алгебрата на този процес.